- Previous Article
- Next Article
- Table of Contents
Clean Technology, Vol.18, No.4, 446-450, December, 2012
일체형 전해조에서 생산된 강알카리성 전해수의 특성
Characteristics of Strong Alkaline Electrolyzed Water Produced in All-in-one Electrolytic Cell
E-mail:
초록
격막식 전해조에서 전해질(염화나트륨, 탄산칼륨 등)을 첨가시킨 수용액을 전해하여 음극에서 생산되는 강알카리성 전해수는 세정효과가 있고, 친환경적이어서 화학적 세정제의 대체물질로 검토되고 있다. 일본에서는 일부 자동차나 정밀부품업계 등에서 세정제로 사용되고 있다. 격막식 전해조를 사용하여 강알카리성전해수를 생산할 경우 필연적으로 양극에서 강산성전해수가 생성된다. 생성되는 강산성전해수는 용도를 찾지 못할 경우 배출되어 폐기되므로 결과적으로 전해수의 생산효율이 저하된다. 또한 격막의 오염으로 인하여 전해효율이 저하되는 단점이 있다. 이러한 단점을 보완하고자 전극반응실과 희석실이 일체화된 무격막 일체형 전해조를 사용하고 전해질의 조성을 변화시키면서 강알카리성전해수를 생성하였으며, 이의 물성 및 특성을 확인하였다. 격막식 전해조에서 생산된 강알카리성전해수와 일체형 전해조에서 생산된 강알카리성전 해수의 물성을 비교한 결과 산화환원전위(oxidation reduction potential, ORP), 염소농도에서 차이가 관찰되었다. 계면활성력을 확인하기위한 유화시험에서도 유사한 결과를 얻었으며 이로부터 무격막 일체형 전해조에서 생산된 강알카리성 전해수는 격막식 전해조에서 생산된 강알카리성 전해수처럼 세정용도로 사용 가능함을 확인하였다. 방청력 시험에서는 격막식전해조에서 생산된 강알카리성 전해수가 우수함을 확인하였다. 무격막 일체형 전해조에서 생산된 강알카리성 전해수는 격막식 전해조에서 생산된 강알카리성 전해수와 달리 유효염소를 함유하고 있어 살균력을 보유하고 있을 것으로 사료된다.
Strong alkaline electrolyzed water which is produced in cathode by electrolyzing the solution where electrolytes (NaCl, K2CO3 etc.) are added in diaphragm electrolytic cell, is eco-friendly and has cleaning effects. So, it is viewed as a substitution of chemical cleaner. In addition, strong alkaline electrolyzed water is being used by some Japanese automobile and precision parts manufacturing industries. When strong alkaline electrolyzed water is produced by using diaphragm electrolytic cell, it is necessarily produced at the anode side. Since strong acidic electrolyzed water produced is discarded when its utilization cannot be found, production efficiency of electrolyzed water is consequently decreased. Also, there is a weakness electrolytic efficiency is decreasing due to the pollution of diaphragm. In order to overcome this, non-diaphragm all-in-one electrolytic cell integrated with electrode reaction chamber and dilution chamber was applied. Strong alkaline electrolyzed water was produced for different composition of electrolytes, and their properties and characteristics were identified. In comparing the properties between strong alkaline electrolyzed water produced in diaphragm electrolytic cell and that produced in all-in-one electrolytic cell, the differences in ORP and chlorine concentration were found. In emulsification test to confirm surface-active capability, similar results were obtained and strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell was identified to be useable as a cleaner like strong alkaline electrolyzed water produced in diaphragm electrolytic cell. Strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell is thought to have sterilizing power because it has active chlorine which is different from strong alkaline electrolyzed water produced in diaphragm electrolytic cell.
Keywords:All-in-one eletrolytic cell;Strong alkaline electrolyzed water;Cleaner;Oxidation reduction potential;Surface-active capability
- Abelson DC, J.Prosthet Dent., 45, 376 (1981)
- Keng SB, Lim M, Quintessence Int., 27, 341 (1996)
- Douglass CW, Gammon MDD, Atwood A, J. Rosthet Dent., 59, 94 (1988)
- Gordon SR, J. Prosthet Dent., 61, 737 (1989)
- Bae JH, Prospectives Ind. Chem., 7(6) (2004)
- Lee SP, Choi SS, Yoon MS, Kim SI, Ministry Environ., Korea (2011)
- Park SH, “Analysis of Electrochemical Characteristics of the Electrolyzed Water,” Chungbuk National Univ., Cheongju (2011)
- Yun SJ, Park SG, Korea J. Waters., 1(2), 20 (2010)
- Choi YC, “Characteristics of Electrolytic Water and their Application of Textile Processing,” Chungnam National Univ., Daejon (2004)
- Lee SH, “Development of Green Process Based on Electrolyzed Water for Production of Print Circuit Board of High Density,” Kwangwoon Univ., Seoul (2009)
- Kang KS, Park HJ, Lee HI, “A Equipment of Electrolytic Sterilizing Water, Manufacturing System and Method Thereof,” R.O.K. Patent NO. 10-1029090 (2011)
- Koseki S, J. Food Sci., 47(12), 888 (2000)
- Kang KS, Kim TI, Lee HI, Han HJ, Park SG, Kim HJ, Han SD, Park K, Rhee YW, Appl. Chem. Eng., 21(2), 188 (2010)