화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.1, 234-239, January, 2013
Preparation of Ni0.1Mg0.9O nanocrystalline powder and its catalytic performance in methane reforming with carbon dioxide
E-mail:
Ni0.1Mg0.9O nanocrystalline powders were prepared by surfactant assisted precipitation method and employed as catalyst in dry reforming. The powders were characterized by using XRD, BET, SEM, TGA/DSC and TPR techniques. The results showed that the surfactant to metal mole ratio affects the textural properties. Increasing in surfactant to metal mole ratio increased the specific surface area and decreased the crystallite and particle size. The Ni0.1Mg0.9O with the highest surface area (115.39 m2 g^(-1)) was employed as catalyst in dry reforming. This catalyst showed a high catalytic activity and stability during 122 h time on stream without any decrease in methane conversion.
  1. Xu DY, Li WZ, Ge QJ, Xu HY, Fuel Process. Technol., 86(9), 995 (2005)
  2. Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Applied Catalysis A., 359, 27 (2009)
  3. Zheng B, Jianhua Y, Xiaodong L, Yong C, Kefa C, International Journal of Hydrogen Energy., 33, 5545 (2008)
  4. Luna AEC, Iriarte ME, Appl. Catal. A: Gen., 343(1-2), 10 (2008)
  5. Safariamin M, Tidahy LH, Abi-Aad E, Siffert S, Aboukais A, Comptes Rendus Chimie., 12, 748 (2009)
  6. Therdthianwong S, Therdthianwong A, Siangchin C, Yongprapat S, International Journal of Hydrogen Energy., 33, 991 (2008)
  7. Rivas ME, Fierro JLG, Goldwasser MR, Pietri E, Perez-Zurita MJ, Griboval-Constant A, Leclercq G, Appl. Catal. A: Gen., 344(1-2), 10 (2008)
  8. Hu YH, Catal. Today, 148(3-4), 206 (2009)
  9. Pichas C, Pomonis P, Petrakis D, Ladavos A, Appl. Catal. A: Gen., 386(1-2), 116 (2010)
  10. Gadalla AM, Bower B, Chemical Engineering Science., 43, 3049 (1988)
  11. Reitmeier RE, Atwood K, Bennet HA, Baugh HM, Industrial and Engineering Chemistry Research., 40, 620 (1948)
  12. Ruckenstein E, Hu YH, Appl. Catal. A: Gen., 133(1), 149 (1995)
  13. Hu YH, Ruckenstein E, Catal. Rev.-Sci. Eng., 44(3), 423 (2002)
  14. Tomishige K, Himeno Y, Matsuo Y, Yoshinaga Y, Fujimoto K, Ind. Eng. Chem. Res., 39(6), 1891 (2000)
  15. Ruckenstein E, Wang HY, J. Catal., 205(2), 289 (2002)
  16. Wang YH, Liu HM, Xu BQ, J. Mol. Catal. A-Chem., 299(1-2), 44 (2009)
  17. Djaidja A, Libs S, Kiennemann A, Barama A, Catal. Today, 113(3-4), 194 (2006)
  18. Song CS, Wei P, Catal. Today, 98(4), 463 (2004)
  19. Tomishige K, Catal. Today, 89(4), 405 (2004)
  20. Mondal KC, Choudhary VR, Joshi UA, Appl. Catal. A: Gen., 316(1), 47 (2007)
  21. Parmalina A, Arena F, Frusteri F, Giordano N, Faraday Transactions., 86, 2663 (1990)
  22. Zecchina A, Spoto G, Coluccia S, et al., Faraday Transactions., 80, 1891 (1984)
  23. Rostrup-Nielsen JR, Journal of Catalysis., 27, 343 (1972)
  24. Grenga HE, Lawless KR, Journal of Applied Physics., 43, 1508 (1972)
  25. Rostrup-Nielsen JR, Sehested J, Norskov JK, Advances in Catalysis., 47, 65 (2002)
  26. Tomishige K, Matsuo Y, Yoshinaga Y, Sekine Y, Asadullah M, Fujimoto K, Appl. Catal. A: Gen., 223(1-2), 225 (2002)
  27. Zhang ZL, Verykios XE, Catalysis Today., 21, 589 (1994)
  28. Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T, Appl. Catal. A: Gen., 144(1-2), 111 (1996)
  29. Kim GJ, Cho DS, Kim KH, Kim JH, Catal. Lett., 28(1), 41 (1994)
  30. Tang S, Lin J, Tan KL, Catal. Lett., 51(3-4), 169 (1998)