화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.168, No.2, 266-278, 2012
Improvement of Bioethanol Productivity of Immobilized Saccharomyces Bayanus with Using Sodium Alginate-Graft-Poly(N-Vinyl-2-Pyrrolidone) Matrix
In this study, immobilization conditions and bioethanol production characteristics of immobilized Saccharomyces bayanus were investigated into sodium alginate-graft-poly(N-vinyl-2-pyrrolidone; NaAlg-g-PVP) matrix. The matrix that crosslinked with calcium clorid was used for immobilization of S. bayanus. Bioethanol productivity of the NaAlg-g-PVP matrix was found to increase from 4.21 to 4.84 gL(-1) h(-1) when compared with the convential sodium alginate matrix. The production of bioethanol was affected by initial glucose concentration and percentage of immobilized cell beads in fermentation medium. Bioethanol productivity was increased from 3.62 to 4.84 gL(-1) h(-1) while the glucose concentration increasing from 50 to 100 gL(-1). Due to the increase in percentage from 10 to 20 % of immobilized cell beads in the fermentation medium, bioethanol productivity was increased from 4.84 to 8.68 gL(-1) h(-1). The cell immobilized NaAlg-g-PVP beads were protected 92 % of initial activity after six repeated fermentation.