Applied Microbiology and Biotechnology, Vol.96, No.1, 69-79, 2012
Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of dl-(+/-)-3-phenyllactic acid
Lipase catalyzed kinetic resolution of dl-(+/-)-3-phenyllactic acid (dl-(+/-)-3-PLA) was investigated to study the synergistic effect of microwave irradiation and enzyme catalysis. Lipases from different sources were employed for the transesterification of dl-(+/-)-3-PLA under otherwise similar conditions, among which Novozyme 435 efficiently catalyzed the resolution of dl-(+/-)-3-PLA to l-(-)-O-acetyl-3-PLA using vinyl acetate as the acyl donor, showing excellent conversion (49 %) and enantiomeric excess (> 99 %). The effect of various parameters affecting the initial rate, conversion and enantiomeric excess of the reaction were studied to establish kinetics and mechanism. There is a synergism between enzyme catalysis and microwave irradiation; an increase in initial rates up to 1.8-fold was observed under microwave irradiation than that under conventional heating. The analysis of initial rate data showed that reaction obeys ternary complex (ordered bi-bi) mechanism with inhibition by dl-(+/-)-3-PLA. The calculated and simulated rates match very well showing the validity of the proposed kinetic model.
Keywords:Immobilized lipase;Microwave irradiation;Enzyme catalysis;Kinetic study;DL-(+/-)-3-phenyllactic acid