Automatica, Vol.48, No.10, 2699-2704, 2012
Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics
This paper presents a novel policy iteration approach for finding online adaptive optimal controllers for continuous-time linear systems with completely unknown system dynamics. The proposed approach employs the approximate/adaptive dynamic programming technique to iteratively solve the algebraic Riccati equation using the online information of state and input, without requiring the a priori knowledge of the system matrices. In addition, all iterations can be conducted by using repeatedly the same state and input information on some fixed time intervals. A practical online algorithm is developed in this paper, and is applied to the controller design for a turbocharged diesel engine with exhaust gas recirculation. Finally, several aspects of future work are discussed. (C) 2012 Elsevier Ltd. All rights reserved.