화학공학소재연구정보센터
Catalysis Today, Vol.195, No.1, 162-168, 2012
Catalytic transformations of biomass-derived acids into advanced biofuels
Biomass can efficiently replace petroleum in the production of fuels for the transportation sector. One effective strategy for the processing of complex biomass feedstocks involves previous conversion into simpler compounds (platform molecules) which are more easily transformed in subsequent upgrading reactions. Lactic acid and levulinic acid are two of these relevant biomass derivatives which can easily be derived from biomass sources by means of microbial and/or chemical routes. The present paper intends to cover the most relevant catalytic strategies designed today for the conversion of these molecules into advanced biofuels (e. g. higher alcohols, liquid hydrocarbon fuels) which are fully compatible with the existing hydrocarbons-based transportation infrastructure. The routes described herein involve: (i) deoxygenation reactions which are required for controlling reactivity and for increasing energy density of highly functionalized lactic and levulinic acid combined with (ii) C-C coupling reactions for increasing molecular weight of less-oxygenated reactive intermediates. (C) 2012 Elsevier B.V. All rights reserved.