화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.73, No.13, 2595-2602, 1999
Effects of molding temperature and pressure on properties of soy protein polymers
Because of the worldwide environmental pollution problem with petroleum polymers, soy protein polymers have been considered as alternatives for biodegradable plastics. The objective of this research was to study the curing behavior of soy protein isolates (SPIs) for that application. The molding variables of temperature, pressure, and time and curing quality factors of tensile strength, strain, and water resistance were evaluated. The maximum stress of 42.9 MPa and maximum strain of 4.61% of the specimen were obtained when SPI was molded at 150 degrees C and 20 MPa for 5 min. The water absorption of the specimen decreased as molding temperature and time increased. Glycerol greatly improved the flexibility of the specimen but decreased its strength. For SPI with 25% glycerol added, the maximum stress and strain of about 12 MPa and 140%, respectively, were achieved when the specimen was molded at 140 degrees C for 5 min. Molding temperature, pressure, and time are major parameters influencing the curing quality of soy protein polymers. At fixed pressure, the molding temperature and time had significant interactive effects on curing quality. At high temperature (e.g., at 150 degrees C) it took about 3 min to reach optimum curing quality; however, at low temperature (120 degrees C) it took about 10 min to reach optimum curing quality. The maximum strength and strain of the cured protein polymer occurred at the molding temperature close to its phase transition temperature or about 40 degrees C below its exothermic temperature.