Current Microbiology, Vol.65, No.5, 589-594, 2012
Quantification of Intracellular Polyhydroxyalkanoates by Virtue of Personalized Flow Cytometry Protocol
Polyhydroxyalkanoates (PHAs) are natural polyesters produced by microbes, a potential alternative to synthetic plastics. Various methods ranging from gravimetry to spectrophotometry are routinely used for qualitative analysis of extracted PHA. There is a great need for accurate quantification of intracellular PHA during bioprocess. Hence, the present study aims to improvise the existing Nile red-based flow cytometry protocol. It was achieved using respective cells in a non-PHA accumulating state as gating control to minimize non-specific staining. The optimal Nile red concentration required for PHA staining is 5 x 10(3) pg mL(-1), which is similar to 10(3)-fold less than that of earlier reports. Further, it was inferred that flow-based quantification was more accurate than the gravimetric method. The intracellular PHA content was highest in Pseudomonas sp. MNNG-S (52.06 %) among the Pseudomonas strains tested by the flow-based method. Both gravimetric and flow-based cell cycle analyses revealed that DNA synthesis (S phase) and PHA production (log phase) are synchronous at 24-48 h of culture. This study supports flow-based PHA quantification for real time online measurement of intracellular PHA for bioreactor monitoring, control and optimization enduing industrial applications.