Journal of Applied Polymer Science, Vol.74, No.7, 1752-1761, 1999
Drug release behavior of electrical responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus
The electrically modulated properties: of interpenetrating polymer networks (IPN) composed of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAAc) under electric field were investigated for drug delivery systems. PVA/PAAc IPNs with various compositions were synthesized by a sequential method, that is, ultraviolet polymerization of AAc in the mixture of PVA and aqueous AAc monomer solution, followed by a freeze-thawing process to prepare elastic hydrogels. The amount of loaded drug significantly increased with the content of PAAc containing ionizable groups in IPN. The amount of introduced ionic drug (cefazoline) was greater than that of the nonionic drug (theophylline). Release behaviors of drug molecules from negatively charged PVA/PAAc IPN were switched on and off in a pulsatile pattern depending on the applied electric stimulus. The released amount and the release rate of drug were influenced significantly by the applied voltage, ionic group contents in IPN, ionic properties of drug solute, and the ionic strength of release medium. In addition, the ionic properties of drug molecules dramatically affected release behaviors, thus the release of ionic drug was much more enhanced than that of the nonionic drug.