화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.116, No.37, 9331-9339, 2012
Computational Studies of CO2 Activation via Photochemical Reactions with Reduced Sulfur Compounds
Reactions between CO2 and reduced sulfur compounds (RSC), H2S and CH3SH, were investigated using ground and excited state density functional theory (DFT) and coupled cluster (CC) methods to explore possible RSC oxidation mechanisms and CO2 activation mechanisms in the atmospheric environment. Ground electronic state calculations at the CR-CC(2,3)/6-311+G-(2df,2p)//CAM-B3LYP/6-311+G(2df,2p) level show proton transfer as a limiting step in the reduction of CO2 with activation energies of 49.64 and 47.70 kcal/mol, respectively, for H2S and CH3SH. On the first excited state surface, CR-EOMCC(2,3)/6-311+G(2df,2p)//CAM-B3LYP/6-311+G(2df,2p) calculations reveal that energies of <250 nm are needed to form H2S-CO2 and CH3SH-CO2 complexes allowing facile hydrogen atom transfer. Once excited, all reaction intermediates and transition states are downhill energetically showing either C-H or C-S bond formation in the excited state whereas only C-S bond formation was found in the ground state. Environmental implications of these data are discussed with a focus on tropospheric reactions between CO2 and RSC, as well as potential for carbon sequestration using photocatalysis.