화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.40, 16899-16908, 2012
Dynamic Nuclear Polarization NMR Spectroscopy of Microcrystalline Solids
Dynamic nuclear polarization (DNP) solid-state NMR has been applied to powdered microcrystalline solids to obtain sensitivity enhancements on the order of 100. Glucose, sulfathiazole, and paracetamol were impregnated with bis-nitroxide biradical (bis-cyclohexyl-TEMPO-bisketal, bCTbK) solutions of organic solvents. The organic solvents were carefully chosen to be nonsolvents for the compounds, so that DNP-enhanced solid-state NMR spectra of the unaltered solids could be acquired. A theoretical model is presented that illustrates that for externally doped organic solids characterized by long spin-lattice relaxation times (T-1(H-1) > 200 s), H-1-H-1 spin diffusion can relay enhanced polarization over micrometer length scales yielding substantial DNP enhancements (epsilon). epsilon on the order of 60 are obtained for microcrystalline glucose and sulfathiazole at 9.4 T and with temperatures of ca. 105 K. The large gain in sensitivity enables the rapid acquisition of C-13-C-13 correlation spectra at natural isotopic abundance. It is anticipated that this will be a general method for enhancing the sensitivity of solid-state NMR experiments of organic solids.