- Previous Article
- Next Article
- Table of Contents
Journal of the Electrochemical Society, Vol.159, No.8, F379-F392, 2012
Studying Low-Humidity Effects in PEFCs Using EIS II. Modeling
Electrochemical impedance spectroscopy (EIS) and steady-state models have been developed to investigate the influence of water transport on the membrane and electrode performance, with focus on the low-frequency impedance. Models for the membrane, hydrogen anode and oxygen cathode were connected in order to take the influence of water concentration on proton conductivity and hydrogen kinetics into account. At low frequencies, below 1 Hz, a pseudo-inductive loop was predicted, resulting from the overlap of the responses from anode and membrane. The anode response could be coupled to changes in the kinetics and polymer conductivity in the active layer, and the membrane response to changes in conductivity with changing water profile. The low frequency capacitive part was attributed to drying of the anode side of the membrane, while the inductive part was attributed to the rehydration of the membrane with water produced at the cathode. The loop appeared at a frequency proportional to 1/L-2, where L is the membrane thickness. The model was successfully fitted to experimental data at different membrane thicknesses, relative humidities and current densities. The modeled data follow the same trends as experimental data, giving an increase in impedance at dry conditions and with thicker membranes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.006208jes]