Langmuir, Vol.28, No.41, 14822-14828, 2012
Grafting Control of Mainstay Terpyridine Self-Assembled Monolayers for the Preparation of Planar Silicon Surfaces with Variable Catalytic Loadings
Mono layers of terpyridine-derivatized silanes were self-assembled, with accurately controlled grafting densities, on single-crystal silicon surfaces. Complexation of the resulting terpyridine monolayers with Pd(OAc)(2) afforded a series of catalytic surfaces covering a full range of Pd loadings (0.14-0.85 nmol.cm(-2)) in the aim to explore their impact on catalysis methodically. X-ray reflectivity (XRR), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma mass spectrometry (ICP-MS) were combined to afford a precise picture of the grafting density, chemical composition, and catalyst loadings of the surfaces investigated here. We report that the control of the terpyridine density and thus the control of catalytic loadings can be achieved through a fine modification of silanization concentrations, which affords surfaces with tunable catalytic activity.