화학공학소재연구정보센터
Nature, Vol.491, No.7426, 740-740, 2012
A canonical stability-elasticity relationship verified for one million face-centred-cubic structures
Any thermodynamically stable or metastable phase corresponds to a local minimum of a potentially very complicated energy landscape. But however complex the crystal might be, this energy landscape is of parabolic shape near its minima. Roughly speaking, the depth of this energy well with respect to some reference level determines the thermodynamic stability of the system, and the steepness of the parabola near its minimum determines the system's elastic properties. Although changing alloying elements and their concentrations in a given material to enhance certain properties dates back to the Bronze Age(1,2), the systematic search for desirable properties in metastable atomic configurations at a fixed stoichiometry is a very recent tool in materials design(3). Here we demonstrate, using first-principles studies of four binary alloy systems, that the elastic properties of face-centred-cubic intermetallic compounds obey certain rules. We reach two conclusions based on calculations on a huge subset of the face-centred-cubic configuration space. First, the stiffness and the heat of formation are negatively correlated with a nearly constant Spearman correlation(4) for all concentrations. Second, the averaged stiffness of metastable configurations at a fixed concentration decays linearly with their distance to the ground-state line (the phase diagram of an alloy at zero Kelvin). We hope that our methods will help to simplify the quest for new materials with optimal properties from the vast configuration space available.