Macromolecules, Vol.45, No.23, 9468-9474, 2012
Stabilization, Aggregation, and Gelation of Microsphere Induced by Thermosensitive Microgel
Poly(N-isopropylacrylamide) (PNIPAM) microgels are adsorbable to the surface of polystyrene (PS) microspheres in the experimental temperature range (25-40 degrees C) and can induce aggregation of microspheres through the bridging mechanism. The bridging mechanism proceeds in two elementary steps: the first is an adsorption (negligible desorption relatively) of free microgel to one microsphere surface, and the next is a reversible connection of the adsorbed microgel to another microsphere surface. The surface coverage is found as an important factor in triggering the stabilization, aggregation, and gelation of the mixtures. And most importantly, the nonnegligible dynamic disconnection of a bridge is the essential prerequisite for structure or state transition. For mixtures with the same concentration of microsphere, depending on the concentration of microgel, various transitions can be induced by changing temperature, including the transition from a weaker gel and from a depletion gel to a bridging gel. gel to a stronger gel, from a fluid to a bridging