화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.51, No.1, 127-135, February, 2013
악취 및 VOC를 함유한 폐가스의 바이오필터 처리: 1. 개선된 바이오필터설계에 의한 압력강하와 미생물 population 분포
Biofilter Treatment of Waste Air Containing Malodor and VOC: 1. Pressure Drop and Microbe-population Distribution of Biofilter with Improved Design
E-mail:
초록
본 연구에서는 개선된 바이오필터설계를 가지는 새로운 바이오필터의 압력강하 및 미생물 population 분포 등을 관찰하고, 같은 유효부피를 갖고 unidirectional flow (UF)를 갖는 전통적 바이오필터의 경우와 비교하였다. 개선된 바이오필터는 운전 초기 또는 정상상태의 장기운전에서 전통적 바이오필터 압력강하의 약 40~80% 이상을 감소시켰다. 미생물 population 분포는 바이오필터 담체인 폐타이어담체와 입상 활성탄의 두 경우 모두 바이오필터 top 단에서 가장 낮았고 바이오필터 밑으로 내려갈수록 미생물 population이 커졌다. 한편 폐타이어담체는 입상활성탄 담체보다 월등히 큰 미생물 population을 나타내는 미생물 콜로니 개체수(CFU counts)를 보였다. 개선된 바이오필터에서 악취가스가 bottom→up으로 공급되는 경우에 악취가스가 top→down으로 공급되는 경우보다 미생물 population 성장이 더욱 컸으며, 입상활성탄 담체보다 폐타이어담체에서 이 현상이 더욱 두드러졌다. 전통적 바이오필터와 개선된 바이오필터시스템 각각의 미생물 population 분포도를 비교하였을 때에, 개선된 바이오필터의 미생물 population은 전통바이오필터보다 입상 활성탄 담체와 폐타이어담체의 경우에 각각 약 15배 및 2.5배 만큼 더 고르게 분포되었다.
In this study, both pressure drop and microbe-population-distribution were observed while running a novel biofilter system with improved design in which the biofilter system is composed of two, upper and lower biofilters with both equal feed-rates of up-flow and down-flow, respectively. Then they were compared with the pressure drop and microbe-population-distribution observed in a conventional biofilter of the same effective volume with unidirectional flow. The pressure drop-value of biofilter system with improved design turned out to be less at the incipient stage of run or steady-state long term operation by more than 40~80% of that of the conventional biofilter. The microbe-populationdistribution was observed to be lower and higher at higher and lower column of biofilter, respectively, for both the conventional biofilter and the biofilter system with improved design. The microbe-media of waste-tire crumb showed much greater CFU counts than GAC. In the biofilter system with improved design, the bottom→up feeding of waste air showed greater microbe-population growth than the top→down feeding for both the microbe-media of waste-tire crumb and GAC. However, it was more prominent for the former than the latter. Comparing the microbe-population-distributions of both of the conventional biofilter and the biofilter system with improved design, the microbe-population of latter was distributed ca. 15 and 2.5 times more evenly for GAC and the media of waste-tire crumb, respectively, than that of former.
  1. Yang CP, Suidan MT, Zu XQ, Kim BJ, Water Sci. Tech., 48, 89 (2003)
  2. Alonso C, Suidan MT, Kim BR, Kim BJ, Environ. Sci. Technol., 2, 3118 (1998)
  3. Okkerse WJH, Ottengraf SPP, Osinga-Kuipers B, Okkerse M, Biotechnol. Bioeng., 63(4), 418 (1999)
  4. Smith FL, Sorial GA, Suidan MT, Breen AW, Bismas P, Environ. Sci. Technol., 30, 1744 (1996)
  5. Cox HHJ, Deshusses MA, J. Eng. Appl.Sci., 62, 216 (1999)
  6. Cox HHJ, Deshusses MA, Water Res., 33, 2383 (1999)
  7. Moe WM, Irvine RL, J. Environ. Eng., 126, 826 (2000)
  8. Kenes C, Veiga MC, Rev.Environ. Sci. Biotechnol., 1, 201 (2002)
  9. Yang CP, Suidan MT, Zu XQ, Kim BJ, Environ. Prog., 22, 87 (2003)
  10. Dorado AD, Baeza JA, Lafuente J, Gabriel D, Gamisans X, Chem. Eng. J., “Biomass Accumulation in Biofilter Treating Toluene at High Loads-Part 1: Experimental Performance from Inoculation to Clogging,” in print (2012)
  11. Song J, Kinney A, AAPG Bull., 68, 508 (2000)
  12. Wright WF, Chem. Eng. J., 113(2-3), 161 (2005)
  13. Znad HT, Katoh K, Kawase Y, J. Hazard. Mater., 141(3), 745 (2007)
  14. Xi J, Hu HY, Qian Y, Biochem.Eng. J., 31, 165 (2006)
  15. Mendoza JA, Prado OJ, Veiga C, Kennes C, Water Res., 38, 404 (2004)
  16. Hassan AA, Sorial G, Chemosphere., 75, 1315 (2009)
  17. Thalasso F, Razo-Flores E, Ancia R, Naveau HP, Nyns EJ, J. Hazard. Mater., 81(1-2), 115 (2001)
  18. Delhomenie MC, Bibeau L, Gendron J, Brzezinski R, Heitz M, Chem. Eng. J., 94(3), 211 (2003)
  19. Lee SH, Lee DW, Lee MG, HWAHAK KONGHAK, 41(6), 781 (2003)
  20. Lim KH, Korean J. Chem. Eng., 22(2), 228 (2005)