Applied Chemistry for Engineering, Vol.24, No.1, 72-76, February, 2013
회수 Boric Acid를 이용한 Dicarboxylic Acid의 환경친화적 에스터화 반응
Eco-friendly Esterification of Dicarboxylic Acid Using Recovered Boric Acid
E-mail:
초록
본 연구에서는 norbornene 디에스터 유도체를 합성하는 공정에서 반응 부산물로 생성되는 boric acid를 회수하여 norbornene diacid의 에스터화 반응에 재사용 가능성을 조사하였다. Boric acid를 4가지의 alcohol과 에스터화 시켜 4종류의 trialkyl borate (tributyl borate, tripentyl borate, triisopentyl borate, trihexyl borate)를 합성한 다음 이를 norbornene dicarboxylic acid와 반응시키는 2단계 공정으로 디에스터 유도체를 합성하였다. 이 때 norbornene dicarboxylic acid의 전환율은 89.50 ∼99.31%였다. 디에스터화 반응의 부산물인 boric acid를 NaCl염과 함께 회수하여 trialkyl borate를 합성한 후 정제한 결과 회수율은 92.43∼99.35%이었다. 이를 다음 반응에 사용한 결과 디에스터의 수율은 43.70∼64.39%였고 순도 97.70 ∼99.24%로 수율이 일부 감소되었으나 손실이 크지 않음을 확인하였다. 주요 반응 부산물인 boric acid를 공정내에서 재사용이 가능하므로 화합물 배출에 의한 환경오염을 사전에 예방할 수 있는 친환경공정으로 적용 가능함을 확인하였다.
In this study, the boric acid which is a by-product in the esterification process to obtain norbornene diester derivatives was recovered, and then its reusability for esterification of norbornene was investigated. Four types of trialkyl borate (tributyl borate, tripentyl borate, and triisopentyl borate, trihexyl borate) were synthesized through the esterification with boric acid and
four types of alcohol. Then, diester derivatives were synthesized by esterification with the synthesized trialkyl borate and norbornene dicarboxylic acid. The conversion of norbornene dicarboxylic acid is 89.50∼99.31%. The boric acid which is a by-product in the esterification were recovered with NaCl salt and used for synthesizing trialkyl borate. The recovery rate was 92.43∼99.35 %. When the recovered trialkyl borate was used in esterification, there are little losses of the yield. Since boric acid which is a major by-product is able to be recovered, the process is expected to be a clean technology to prevent an environmental pollution by the emission of chemical compounds.
- Kirk, Othmer DF, in Mary, H. G.(Ed), J. Wiley & Sons, New York, 4th edn, 9, 386 (1997)
- Yadav GD, Mehta PH, Ind. Eng. Chem. Res., 33(9), 2198 (1994)
- Bender ML, Chem. Rev., 60, 53 (1960)
- Yadav GD, Nair JJ, Microporous Mesoporous Mater., 33, 1 (1999)
- Sejidov FT, Mansoori Y, Goodarzi N, J. Mol. Catal. A-Chem., 240(1-2), 186 (2005)
- Garcia CM, Teixeira S, Marciniuk LL, Schuchardt U, Bioresour. Technol., 99(14), 6608 (2008)
- Corma A, Garcia H, Iborra S, Primo J, J. Catal., 120, 78 (1989)
- Ma YD, Wang QL, Yan H, Ji XD, Qiu Q, Appl. Catal. A: Gen., 139(1-2), 51 (1996)
- Kirumakki SR, Nagaraju N, Chary KVR, Narayanan S, Appl. Catal. A: Gen., 248(1-2), 161 (2003)
- Arabi M, Amini MM, Abedini M, Nemati A, Alizadeh M, J. Mol. Catal. A-Chem., 200(1-2), 105 (2003)
- Thorat TS, Yadav VM, Yadav GD, Appl. Catal., A., 90, 73 (1992)
- Verhoef MJ, Kooyman PJ, Peters JA, Bekkum HV, Microporous Mesoporous Mater., 27, 365 (1999)
- Mansoori Y, Tataroglu FS, Sadaghian M, Green Chem., 7, 870 (2005)
- Mansoori Y, Seyidov FT, Bohlooli S, Zamanloo MR, Imanzadeh GH, Chin. J. Chem., 25, 1878 (2007)
- Craig D, J. Am. Chem. Soc., 73, 4889 (1951)
- Lappert MF, Chem. Rev., 56, 959 (1956)
- Jin YW, Park JS, Park YS, Woo JW, Adv. Mater.Res., 415, 1849 (2012)