화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.25, No.1, 19-27, February, 2013
A numerical study of the effect of catheter angle on the blood flow characteristics in a graft during hemodialysis
E-mail:
For patients with renal failure, renal replacement therapies are needed. Hemodialysis is a widely used renal replacement method to remove waste products. It is important to improve the patency rate of the vascular access for efficient dialysis. Since some complications such as an intimal hyperplasia are associated with the flow pattern, the hemodynamics in the vascular access must be considered to achieve a high patency rate. In addition, the blood flow from an artificial kidney affects the flow in the vascular access. Generally, the clinical techniques of hemodialysis such as the catheter angle or dialysis dose have been set up empirically. In this study, a numerical analysis is performed on the effect of the catheter angle on the flow in the graft. Blood is assumed to be a non-Newtonian fluid. According to the high average wall shear stress value, the leucocytes and platelets can be activated not only at the arterial anastomosis, but also at the bottom of the venous graft, when the catheter angle is not zero. For a catheter angle less than five degrees, there is a low shear and high oscillatory shear index region that appears at the venous graft and the venous anastomosis. Thus, a catheter angle less than five degrees should be avoided to prevent graft failure.
  1. Beathard G, Adv. Renal Replace. Th., 1(2), 131 (1994)
  2. Lee BK, Xue S, Nam J, Lim H, Shin S, Korea-Aust. Rheol. J., 23(1), 1 (2011)
  3. Cho Y, Kensey K, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology. condition, T.N.C.C.F.C., Chronic Kidney Disease, Royal College of Physicians (1991)
  4. Dixon BS, Beck GJ, Dember LM, Vazquez MA, Greenberg A, Delmez JA, Allon M, Himmelfarb J, Hu B, Greene T, Radeva MK, Davidson IJ, Ikizler TA, Braden GL, Lawson JH, Cotton JR, Kusek JW, Feldman HI, J. Am. Soc. Nephrol., 22(4), 773 (2011)
  5. Decorato I, Kharboutly Z, Legallais C, Salsac AV, Comput.Methods Biomech. Biomed. Eng., (Sup1), 14, 121 (2011)
  6. Fry DL, Circ. Res., 22(2), 165 (1968)
  7. Fung Y, Biomechanics: Mechanical properties of living tissues (1993)
  8. Gijsen FJH, Vosse FN, Janssen JD, Biorheology., 35(4), 263 (1998)
  9. Glor F, Long Q, Hughes A, Augst A, Ann. Biomed. Eng., 31, 142 (2003)
  10. He X, J. Biomech. Eng., 118(1), 74 (1996)
  11. Himburg H, Grzybowski D, Am. J. Physiol. Heart Circ. Physiol., 286, 1916 (2004)
  12. Johnston BM, Johnston PR, Corney S, Kilpatrick D, J. Biomech., 37(5), 709 (2004)
  13. Kim JY, Ro K, Ryou HS, Journal of Computational Fluids Engineering (in Korea)., 16(4), 84 (2011)
  14. Krueger U, Zanow J, Scholz H, Artif. Organs., 26(7), 571 (2002)
  15. Ku D, Giddens D, Zarins C, Arterioscler. Thromb. Vasc. Biol., 5, 293 (1985)
  16. Lei M, Archie JP, Kleinstreuer C, J. Vasc. Surg., 25(4), 637 (1997)
  17. Leverett LB, Hellums JD, Alfrey CP, Lynch EC, Biophys.J., 12(3), 257 (1972)
  18. Lumsden A, Suggs W, Ku D, J. Vasc. Invest., 2, 12 (1996)
  19. Malek A, Alper, S, JAMA., 282(21), 2035 (1999)
  20. McIntire LV, Martin RR, Mechanical trauma induced PMN leucocyte dysfunction, The Rheology of Blood Vessels and Associated Tissues, Alphen aan den Rijn: Sijthoff and Noordhoff, 214 (1981)
  21. National Kidney Foundation, Clinical practice guidelines for vascular access. (1997)
  22. Nevaril C, Lynch E, Alfrey C, J. Lab. Clin. Med., 71(5), 784 (1968)
  23. Niemann A, Kock SA, Nygaard JV, Frund ET, Petersen SE, Hasenkam JM, Assessment of hemodynamic conditions in a-v fistulas using CFD, Excerpt from th Proceedings of the COMSOL Users Conference. (2007)
  24. PapaioannouT, Stefanadis C, Hell. J. Cardiol., 46(1), 9 (2005)
  25. Roy-Chaudhury P, Kelly BS, Miller MA, Reaves A, Armstrong J, Nanayakkara N, Heffelfinger SC, Kidney Int., 59(6), 2325 (2001)
  26. Soulis J, Lampri O, Fytanidis D, Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta, 10th International Workshop on Biomedical Engineering, 1 (2011)
  27. Stehman-Breen CO, Sherrard DJ, Gillen D, Caps M, Kidney Int., 57(2), 639 (2000)
  28. Tordoir J, Canaud B, Haage P, Konner K, Basci A, Fouque D, Kooman J, Martin-Malo A, Pedrini L, Pizzarelli F, Tattersall J, Vennegoor M, Wanner C, Wee P, Vanholder R, Nephrol. Dial. Transplant., 22(2), 88 (2007)
  29. Tricht IV, Wachter DD, Tordoir J, Verdonck P, Ann. Biomed. Eng., 33(9), 1142 (2005)
  30. Tricht IV, Wachter DD, Tordoir J, Verdonck P, J. Biomech., 39(2), 226 (2006)
  31. Tricht IV, Wachter DD, Tordoir J, Vanhercke D, Verdonck P, ASAIO J., 51(4), 352 (2005)
  32. Tricht IV, Wachter DD, Vanhercke D, Tordoir J, Verdonck P, Artif. Organs., 28(7), 617 (2004)
  33. Unnikrishnan S, Huynh TN, Brott BC, Ito Y, Cheng CH, Shih AM, Allon M, Anayiotos AS, J.Biomed. Eng., 127(7), 1141 (2005)
  34. Van Canneyt K, Pourchez T, Eloot S, Guillame C, Bonnet A, Segers P, Verdonck P, J. Vasc. Access., 11(1), 52 (2010)
  35. Woods J, Turenne MN, Strawderman RL, Young EW, Hirth RA, Port FK, Held PJ, Am.J. Kidney Dis., 30(1), 50 (1997)