화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.5, 997-1007, May, 2013
Eco-efficiency and control loop configuration for recycle systems
E-mail:
To integrate measurements of eco-efficiency with control loop configuration has become an important topic since all industrial processes/plants are requested to increase their eco-efficiency. The exergy eco-efficiency factor, a new measure of eco-efficiency for control loop configuration, has been developed recently [1]. The exergy eco-efficiency factor is based on the thermodynamic concept of exergy, which can be used to analyze a process in terms of its efficiency. The combination of the relative gain array (RGA), NI, CN, dynamic RGA, and the exergy eco-efficiency factor will help guide the process designer to find the optimal control design with low operating cost/eco-efficiency. In this paper, we validate the proposed exergy eco-efficiency factor for processes with recycles which are very common industrially.
  1. Munir MT, Yu W, Young BR, Plant-wide control: Eco-efficiency and control loop configuration, ISA Transactions, 52(1), 162 (2013)
  2. Seborg DE, Edgar TF, Mellichamp DA, Process dynamics and control, New York: John Wiley & Sons (1989)
  3. Svrcek WY, Mahoney DP, Young BR, A real-time approach to process control, Chichester: John Wiley & Sons Ltd. (2006)
  4. Westphalen DL, Young BR, Svrcek WY, Ind. Eng. Chem. Res., 42(20), 4659 (2003)
  5. He MJ, Cai WJ, Ind. Eng. Chem. Res., 43(22), 7057 (2004)
  6. McAvoy TJ, Arkun Y, Chen R, Robinson D, Schnelle PD, Control Eng. Practice., 11(8), 907 (2003)
  7. Xiong Q, Cai WH, He MJ, J. Process Control, 15(7), 741 (2005)
  8. Vasudevan S, Rangaiah GP, Ind. Eng. Chem. Res., 49(19), 9209 (2010)
  9. Larsson T, Skogestad S, Identification and Control., 21(4), 209 (2000)
  10. Szargut J, Morris DR, Steward FR, Exergy analysis of thermal, chemical, and metallurgical processes, New York: Hemisphere (1988)
  11. Montelongo-Luna JM, Svrcek WY, Young BR, Asia-Pacific J. Chem. Eng., 2(5), 431 (2007)
  12. Muangnoi T, Asvapoositkul W, Wongwises S, Appl. Therm.Eng., 27(5-6), 910 (2007)
  13. Moran MJ, Sciubba E, J. Eng. Gas Turbines Power., 116(2), 285 (1994)
  14. Rosen MA, Dincer I, Int. J. Energy Res., 21, 643 (1997)
  15. Rosen MA, Dincer I, Int. J. Energy Res., 23(13), 1153 (1999)
  16. Rosen MA, Dincer I, Exergy, An Int. J., 1(1), 3 (2001)
  17. Dincer I, Energy Policy, 30(2), 137 (2002)
  18. Dincer I, Rosen MA, Exergy: Energy, environment and sustainable development, Amsterdam: Elsevier (2007)
  19. Dincer I, Hussain MM, Al-Zaharnah I, Energy Policy, 32(14), 1615 (2004)
  20. Luyben WL, Tyreus BD, Luyben ML, Plantwide process control, New York: McGraw-Hill (1998)
  21. Munir MT, Yu W, Young BR, Determination of Plant-wide Control Loop Configuration and Eco-Efficiency, Rangaiah GP, Kariwala V (Eds.), in Plantwide Control: Recent Developments and Applications, John Wiley & Sons, ISBN:9780470980149 (2012)
  22. Montelongo-Luna JM, Svrcek WY, Young BR, The Relative Exergy Array - A tool for integrated process design and control in Chemeca 20092009: Perth, Australia.
  23. Montelongo-Luna JM, Svrcek WY, Young BR, The Canadian J. Chem. Eng., 89(3), 545 (2010)
  24. Munir MT, Yu W, Young BR, Control loop configuration and eco-efficiency, in FOCAPO/CPC-VIII2012: Savannah, Georgia, USA.
  25. Munir MT, Chen JJ, Young BR, A computer program to calculate the stream exergy using the visual basic graphical interface, in Chemeca2010: Adelaide, Australia.
  26. Munir MT, Yu W, Young BR, Chem. Eng. Res. Des., 90(1A), 110 (2012)
  27. Papadourakis A, Doherty MF, Douglas JM, Ind. Eng. Chem.Res., 26(6), 1259 (1987)
  28. Bristol E, Automatic Control, IEEE Transactions on., 11(1), 133 (1966)
  29. Skogestad S, Lundstrom P, Jacobsen EW, AIChE J., 36(5), 753 (1990)
  30. Witcher MF, McAvoy TJ, ISA Trans., l6(3), 35 (1977)
  31. Fatehi A, Shariati A, Automatic pairing of MIMO plants using normalized RGA, in Mediterranean conference on control and automation2007: Athens Greece.
  32. Niederlinski A, Automatica., 7(6), 691 (1971)
  33. Zhu ZX, Jutan A, Chem. Eng. Communications., 121(1), 235 (1993)
  34. McAvoy TJ, Interaction analysis: Principles and applications. Research Triangle Park, NC: Instrument Society of America (1983)
  35. Ogunnaike BA, Ray WH, Process dynamics, modelling and control, Oxford University Press (1994)
  36. Goldberg J, Potter MC, Differential equations a systems approach, New Jersey: Prentice-Hall (1998)
  37. Denbigh KG, Chem. Eng. Sci., 6(1), 1 (1956)
  38. Kotas TJ, The exergy method of thermal plant analysis, London: Butterworths. Medium: X; Size: Pages: 344 (1985)
  39. Smith JM, Ness HCV, Abbott MM, Introduction to chemical engineering thermodynamics, New York: McGraw-Hill (2005)
  40. Smith R, Chemical process design and integration, Chichester, England: John Wiley & Sons, Ltd. (2005)
  41. Hinderink AP, Kerkhof FP, Lie AB, Arons JD, Vanderkooi HJ, Chem. Eng. Sci., 51(20), 4693 (1996)
  42. Szargut J, Morris DR, Steward FR, Energy analysis of thermal, chemical, and metallurgical processes, Medium: X; Size: Pages: 332 (1988)
  43. Seider WD, Seader JD, Lewin DR, Product and process design principles: Synthesis, analysis, and evaluation, 2nd Ed., New York: John Wiley (2004)
  44. Montelongo-Luna JM, Process design and control for ecoefficiency, in Chemical and Petroleum Engineering2010, University of Calgary: Calgary, Alberta.