화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.2, 523-528, March, 2013
Direct conversion of citrus peel waste into hydroxymethylfurfural in ionic liquid by mediation of fluorinated metal catalysts
E-mail:
A new green technology was developed using citrus peel waste to produce hydroxymethylfurfual (HMF). FT-IR analysis of the waste showed 4 characteristic vibration modes (C-H, C-O, C-OH, and C=O/COO^(-)), contributing to sugars. XRD and FESEM elucidated that the waste and its hydrolysate consist of highly amorphous clusters. HCl increased HMF yield by 1.4-fold. CrF3 increased its yield by 1.7-fold. At 0.2 of the stoichiometric ratio value, HMF yield was highest. The highest HMF yield was achieved in the reaction mixture of 4 g [OMIM]Cl, 1 mL ethyl acetate, 0.1 g CrF3, 5 mL 0.3 M HCl, and 0.5 g biomass.
  1. Bozell JJ, Petersen GR, Green Chemistry., 12, 539 (2010)
  2. Tadesse H, Luque R, Energy and Environmental Science., 4, 3913 (2011)
  3. Lee JW, Ha MK, Yi YB, Chung CH, Carbohydrate Research., 346, 177 (2011)
  4. Yi YB, Lee JW, Hong SS, Choi YH, Chung CH, J. Ind. Eng. Chem., 17(1), 6 (2011)
  5. Yi YB, Lee JW, Choi YH, Park SM, Chung CH, Environmental Chemistry Letters., 10, 13 (2012)
  6. Yi YB, Ha MK, Lee JW, Chung CH, Chemical Engineering Journal., 180, 370 (2012)
  7. Yi YB, Lee JW, Choi YH, Park SM, Chung CH, Biomass and Bioenergy., 39, 484 (2012)
  8. Tripodo MM, Lanuzza F, Micali G, Coppolino R, Nucita F, Bioresour. Technol., 91(2), 111 (2004)
  9. Lo´ pez IAS, Li Q, Thompson IP, Critical Reviews in Biotechnology., 30, 63 (2010)
  10. Widmer W, Zhou WY, Grohmann K, Bioresour. Technol., 101(14), 5242 (2010)
  11. Roma´ n-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA, Nature., 447, 982 (2007)
  12. Binder JB, Cefali AV, Blank JJ, Raines RT, Energy and Environmental Science., 3, 765 (2010)
  13. Caffall KH, Mohnen D, Carbohydrate Research., 344, 1879 (2009)
  14. Rivas B, Torrado A, Torre P, Converte A, Dominguez JM, Journal of Agricultural and Food Chemistry., 56, 2380 (2008)
  15. Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Korean Journal of Chemical Engineering., 27, 920 (2010)
  16. Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Starch/Sta¨rke., 62, 326 (2010)
  17. Sta˚ hlberg T, Fu W, Woodley JM, Riisager A, ChemSusChem., 4, 451 (2011)
  18. Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee SG, Accounts of Chemical Research., 43, 985 (2010)
  19. Stark A, Energy and Environmental Science., 4, 19 (2011)
  20. Lewkowski J, ARKIVOC, ARKAT-USA, ISSN; 1424-6376 (Website: www.arkat-usa.org/home.aspx?VIEW-MANUSCRIPT&MSID=403), 1, 17 (2001)
  21. Zhao H, Holladay JE, Brown H, Zhang ZC, Science., 316, 1597 (2007)
  22. Chaudhuri S, Chupas P, Morgan BJ, Madden PA, Grey CP, Physical Chemistry Chemical Physics., 8, 5045 (2006)
  23. Ghosh AK, Kydd RA, Catalysis Reviews: Science and Engineering., 27, 539 (1985)
  24. Kacˇura´kova´ M, Wilson RH, Carbohydrate Polymers., 44, 291 (2001)
  25. Wilson RH, Smith AC, Kacˇura´kova´ M, Saunders PK, Wellner N, Waldron KW, Plant Physiology., 124, 397 (2000)
  26. Max JJ, Chapados C, J. Phys. Chem. A, 111(14), 2679 (2007)
  27. Fares MM, Assaf SM, Abul-Haija YM, J. Appl. Polym. Sci., 117(4), 1945 (2010)
  28. Zhang J, Elder TJ, Pu Y, Ragauskas AJ, Carbohydrate Polymers., 69, 607 (2007)
  29. Zhao HB, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE, Energy Fuels, 20(2), 807 (2006)
  30. Gyurcsik B, Nagy L, Coordination Chemistry Reviews., 203, 81 (2000)
  31. Brown BH, Smith WE, El-Shahawi MS, Wazir MFK, Inorganica Chimica Acta., 124, L25 (1986)
  32. Hancock RD, Hegetschweiler K, Journal of the Chemical Society, Dalton Transactions., 2137 (1993)
  33. Rao CP, Kaiwar SP, Raghavan MSS, Polyhedron., 13, 1895 (1994)
  34. Nagorski RW, Richard JP, J. Am. Chem. Soc., 123(5), 794 (2001)
  35. Roma´n-Leshkov Y, Moliner M, Labinger JA, Davis ME, Angewandte Chemie International Edition., 49, 8954 (2010)