화학공학소재연구정보센터
Journal of Catalysis, Vol.153, No.1, 177-189, 1995
Titania-Silica Mixed Oxides .2. Catalytic Behavior in Olefin Epoxidation
Various titania-silica aerogels prepared by an alkoxide-sol-gel route have been tested in the epoxidation of bulky olefins using cumene hydroperoxide as oxidant. The drying method, the titanium content between 2 and 20 wt%, and the calcination temperature between 473 and 1073 K were the most important preparation parameters, influencing the catalytic behaviour of the aerogels. The aerogels dried by semicontinuous extraction with supercritical CO2 at low temperature (LT aerogel) were found to be much more efficient epoxidation catalysts than aerogels prepared by high-temperature supercritical drying and conventionally dried xerogels. The reaction rate of cyclohexene epoxidation over LT aerogels increased monotonically with increasing Ti content. In the range of 333-363 K the catalysts containing 20 wt% Ti0(2)(20LT) showed high activity and selectivity (79-93% to peroxide and 87-100% to epoxide) in the oxidation of various cyclic olefins, including cyclododecene, norbornene, cyclohexene, and limonene. Catalytic experiments, FTIR, and UV-vis spectroscopy indicated that the LT aerogels consist of two different types of active species : titanium well-dispersed in the silica matrix and titania nanodomains. The key factors determining the activity and selectivity of sol-gel titania-silica catalysts are the morphology (surface area and pore size) and the relative proportions of Ti-O-Si and Ti-O-Ti structural parts. A comparative study of the epoxidation of cyclohexene, cyclododecene, and norbornene over structurally different titania-silica catalysts, indicates that 20LT shows better catalytic behaviour in these reactions than Ti zeolites and silica-supported titania.