화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.114, No.6, 589-595, 2012
Gene cloning and catalytic characterization of cold-adapted lipase of Photobacterium sp MA1-3 isolated from blood clam
A lipase-producing Photobacterium strain (MA1-3) was isolated from the intestine of a blood clam caught at Namhae, Korea. The lipase gene was cloned by shotgun cloning and encoded 340 amino acids with a molecular mass of 38,015 Da. It had a very low sequence identity with other bacterial lipases, with the exception of that of Photobacterium lipolyticum M37 (83.2%). The MA1-3 lipase was produced in soluble form when Escherichia coli cells harboring the gene were cultured at 18 degrees C. Its optimum temperature and pH were 45 degrees C and pH 8.5, respectively. Its activation energy was calculated to be 2.69 kcal/mol, suggesting it to be a cold-adapted lipase. Its optimum temperature, temperature stability, and substrate specificity were quite different from those of M37 lipase, despite the considerable sequence similarities. Meanwhile, MA1-3 lipase performed a transesterification reaction using olive oil and various alcohols including methanol, ethanol, 1-propanol, and 1-butanol. In the presence of t-butanol as a co-solvent, this lipase produced biodiesel using methanol and plant or waste oils. The highest biodiesel conversion yield (73%) was achieved using waste soybean oil and methanol at a molar ratio of 1:5 after 12 h using 5 units of lipase. (C) 2012, The Society for Biotechnology, Japan. All rights reserved.