Journal of Materials Science, Vol.48, No.4, 1729-1739, 2013
Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials
Polyaniline/graphene oxide (PANI/GO) composites were prepared by polymerization of aniline monomer in the presence of GO under acidic conditions. The synthesized samples were characterized by Fourier transform infra red spectroscopy, ultraviolet-visible absorption, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The direct current electrical conductivity of the composite was calculated by a four-probe technique. It is found that the conductivity dramatically increased to 241 S m(-1) for PANI/GO (5 wt%) composite at 110 degrees C compared to pure PANI (7.5 S m(-1)). The composite material was investigated as a methanol vapour sensor and compared with pure PANI. The methanol-sensing characteristics of the prepared composite was monitored by measuring the change in electrical resistivity on exposure to methanol vapour at different concentrations. The resistivity of PANI increases on exposure to methanol vapour because of strong hydrogen bonding between methanol with the polymer chain. A density functional theory study was carried out to verify the proposed concept of hydrogen bonding between the polymer chains and methanol. The presence of GO in PANI/GO composite increases the sensitivity towards methanol as compared with the pure PANI.