화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.2, No.2, 127-137, June, 1991
MoO3 촉매상에서의 메탄올 부분산화반응
The Partial Oxidation of Methanol of MoO3 Catalyst
초록
고진공계에서의 열탈착실험을 통하여 MoO3 촉매상에서의 CH3OH 분해 및 부분산화반응에 관한 연구를 수행하였다. CH3OH는 촉매표면에 methoxy(-OCH3)와 수소원자(-H)의 형태로 흡착되어 있다가 흡착수소원자가 methoxy 와 재결합하면서 425 K에서 CH3OH로 탈착하였으며, methoxy로부터 수소원자가 떨어져 나가면서 545 K에서 HCHO가 탈착되었다. 이때 반응에 의해서 생성된 물은 428 K에서 탈착하는 α-피크와 586 K에서 탈착하는 β-피크를 보였으며, α-피크는 표면에 형성된 hydroxyl 에 기인하는 탈착피크, β-피크는 methoxy가 수소를 잃으면서 HCHO의 형태로 촉매표면에서 탈착하면서 남긴 표면수소원자와 격자산소가 반응하여 생성된 물에 각각 기인하는 것으로 보였다. 선흡착된 산소원자는 CH3OH의 분해흡착을 촉진시킴으로써 CH3OH의 흡착량을 감소시켰다.
The dissociation and partial oxidation of CH3OH on polycrystalline MoO3 powder catalyst were studied using thermal desorption spectrometry(TDS) under high vacuum condition. CH3OH was dissociatively adsorbed on MoO3 in the forms of surface methoxy(-OCH3) and atomic hydrogen(-H). CH3OH desorbed at 425 K via the re-association of methoxy and adsorbed hydrogen atom, and HCHO desorbed at 545 K through the bond breakage of C-H in methoxy. Water TDS spectra showed two desorption peaks, that is, α-peak at 428 K and β-peak at 586 K. It was suggested that α-peak was due to the hydroxyl formed on MoO3 surface during the dissociation of CH3OH, and that β-peak was from the association of lattice oxygen and surface hydrogen atom formed by the bond breakage of C-H in methoxy. Pre-adsorbed oxygen on the surface of MoO3 catalyst increased the amount of adsorption of CH3OH by promoting the dissociation of CH3OH on the surface, whereas pre-adsorbed water decreased the amount of adsorption of CH3OH by blocking of adsorption sites for CH3OH.
  1. LePage JF, "Applied Heterogeneous Catalysis," Chap. 9, Editions Techniq., Paris (1986)
  2. Keim W, "Catalysis in C1 Chemistry," D. Reidel Publishing Company, Dordrecht, p. 89 (1983)
  3. Sites AB, "Applied Industrial Catalysis," B.E. Leach(ed.), 2, Academic Press, New York, p. 138 (1983)
  4. Adkins H, Peterson WR, J. Am. Chem. Soc., 53, 512 (1931)
  5. Novakova J, Jiru P, Zavadil V, J. Catal., 17, 93 (1970) 
  6. Novakova J, Kiru P, Zavadil V, J. Catal., 21, 143 (1971) 
  7. Grzybowska B, Haber J, Janas J, J. Catal., 49, 150 (1977) 
  8. Haber J, "Solid State Chemistry in Catalysis," R.K. Grasselli and J.F. Bradzil (Eds.), ACS., Washington, p. 3 (1985)
  9. Novakova J, Catal. Rev.-Sci. Eng., 4, 77 (1971)
  10. Groff RP, J. Catal., 86, 215 (1984) 
  11. Yang TJ, Lunsford JH, J. Catal., 103, 55 (1987) 
  12. Ohuchi F, Firment LE, Chowdhry U, Ferretti A, J. Vac. Sci. Technol. A, 2, 1022 (1984) 
  13. Tatibouet JM, Germain JE, J. Catal., 72, 375 (1981) 
  14. Tatibouet JM, Germain JE, Volta JL, J. Catal., 82, 240 (1983) 
  15. Trifiro F, Notarbartolo S, Pasquon I, J. Catal., 22, 324 (1971) 
  16. Allison JN, Golddard JA, J. Catal., 92, 127 (1985) 
  17. Park YS, Lee HI, HWAHAK KONGHAK, 23(2), 79 (1985)
  18. Farneth WE, Staley RH, Sleight AW, J. Am. Chem. Soc., 108, 2327 (1986) 
  19. Redhead PA, Vacuum, 12, 20 (1962)
  20. Golodets GI, "Studies in Surface Science and Catalysis," Vol. 15, "Heterogeneous Catalytic Reaction Involving Molecular Oxygen," Chap. XVI, Elsevier, Amsterdam (1983)
  21. Toyoshima I, Somorjai GA, Catal. Rev.-Sci. Eng., 19, 105 (1979)
  22. Pernicone N, Lazzerin F, Liberti G, Lanzavecchia G, J. Catal., 14, 293 (1969)