Materials Chemistry and Physics, Vol.137, No.3, 1025-1030, 2013
Thermal analysis and mechanism of alpha-Zn2SiO4:Mn2+ formation from zinc oxalate dihydrate under hydrothermal conditions
Reaction of zinc oxalate dihydrate in high-temperature water at 200-400 degrees C was investigated to understand the mechanism of alpha-Zn2SiO4:Mn2+ formation and specifically why zinc oxalate dihydrate forms alpha-Zn2SiO4 crystalline phase at a higher rate compared with other water soluble and insoluble zinc sources studied in our previous works. From experiments under hydrothermal conditions, it was determined that the dehydration of zinc oxalate dihydrate became suppressed as the temperature and pressure increased. From thermal analyses, zinc oxalate dihydrate, which dehydrates at 160 degrees C in air, was stable at conditions up to 300 degrees C in water and this resulted in the lack of formation of the intermediate phase, hemimorphite, which forms at 150-175 degrees C from other zinc compounds (e.g. ZnO). The stability of the zinc oxalate dihydrate under hydrothermal conditions can possibly be attributed to changes in the chemical equilibrium with temperature and pressure which leads to the compound having less reactivity with silica so that reaction paths to form hemimorphite and beta-Zn2SiO4 become unfavorable. Zinc oxalate dihydrate as starting material provided alpha-Zn2SiO4 at a higher formation rate than other starting materials. (C) 2012 Elsevier B.V. All rights reserved.
Keywords:Crystallisation;Fourier transform infrared spectroscopy (FTIR);Inorganic compounds;Thermogravimetric analysis (TGA)