Journal of the American Chemical Society, Vol.135, No.3, 986-989, 2013
Origin of the Tunable Open-Circuit Voltage in Ternary Blend Bulk Heterojunction Organic Solar Cells
Ternary blend bulk heterojunction organic solar cells comprising either a polythiophene donor and two fullerene acceptors or two polythiophene donors and a fullerene acceptor are shown to have unique electronic properties. Measurements of the photocurrent spectral response and the open-circuit voltage show that the HOMO and LUMO levels change continuously with composition in the respective two-component acceptor or donor pair, consistent with the formation of an organic alloy. However, optical absorption of the exciton states retains the individual molecular properties of the two materials across the blend composition. This difference is attributed to the highly localized molecular nature of the exciton and the more delocalized intermolecular nature of electrons and holes that reflect the average composition of the alloy. As established here, the combination of molecular excitations that can harvest a wide range of photon energies and electronic alloy states that can adjust the open-circuit voltage provides the underlying basis of ternary blends as a platform for highly efficient next-generation organic solar cells.