Korean Chemical Engineering Research, Vol.51, No.2, 208-213, April, 2013
이소프로판올의 탈수반응에서 지르코니아 촉매의 결정상에 따른 영향
The Effect of the Crystalline Phase of Zirconia for the Dehydration of Iso-propanol
E-mail:
초록
염화 지르코니움산화물을 수용액상하에 100 ℃에서 다양한 숙성 시간 동안 환류시켜 지르코니움 수화물을 제조하였고 결정성 ZrO2를 얻기 위하여 700 ℃에서 6시간 소성하였다. 제조된 물질의 특성분석을 위하여 시차 열분석, X-선회절 분석, 비표면적과 세공분포 측정, 투과 전자 현미경 분석, 암모니아 승온 탈착 분석, 이산화탄소 승온 탈착 분석 그리고 이소프로판올 승온 탈착 분석을 수행하였다. 24시간 숙성시키고 700 ℃에서 소성 후 순수한 정방형계 지르코니아만을 얻을 수 있었다. 숙성시간 증가는 상대적으로 더 작은 입자, 고비표면적 및 고 기공부피의 지르코니아를 제조할 수 있었다. 지르코니아의 숙성 시간이 길어질수록 흡착된 암모니아의 양이 상대적으로 증가하는 경향을 보였고 상대적으로 흡착된 이산화탄소의 양은 감소하였다. 지르코니아 촉매상에서 프로필렌을 생성하는 이소프로판올 탈수 반응에서 촉매 활성은 168시간 동안 숙성하여 제조한 지르코니아 촉매가 가장 좋은 활성이 나타냈다. 이러한 촉매활성
은 촉매의 비표면적, 산점, 상대적으로 용이한 프로판올의 탈착과 연관시킬 수 있었다.
Zirconium hydroxide was synthesized by varying the aging time of the zirconyl chloride octahydrate at 100 ℃ in aqueous solution and the resulting hydroxides were calcined at 700 ℃ for 6 h to obtain the crystalline ZrO2. The materials used in this study were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), N2-sorption, transmission electron microscopy (TEM), NH3 temperature-programmed desorption (NH3-TPD), CO2-TPD and iso-propanol TPD analyses to correlate with catalytic activity for the dehydration of iso-propanol. The pure tetragonal ZrO2 phase was obtained after 24 h aging of zirconium hydroxide and successive calcination at 700 ℃. The increase of aging time showed the production of smaller particle size ZrO2 resulting that the higher specific surface area and total pore volume. NH3-TPD results revealed that the relative acidity of the catalysts increased along with the increase of aging time. On the other hand, the results of CO2-TPD showed the reverse trend of NH3-TPD results. The best catalytic activity for the dehydration of iso-propanol to propylene was shown over ZrO2 catalyst aged for 168 h which had the highest SBET (178 m2 g^(-1)). The catalytic activity could be correlated with high surface area, relative acidity and easy desorption of iso-propanol.
- Rodriguez JA, Hrbek J, Surf. Sci., 604, 241 (2010)
- Chuah GK, Jaenicke S, Pong BK, J. Catal., 175(1), 80 (1998)
- Stichert W, Schuth F, Chem, Mater., 10, 2020 (1998)
- Chuah GK, Jaenicke S, Cheong SA, Chan KS, Appl. Catal. A: Gen., 145(1-2), 267 (1996)
- Parida KM, Pattnayak PK, J. Colloid Interface Sci., 182(2), 381 (1996)
- Chuah GK, Jaenicke S, Appl. Catal. A: Gen., 163(1-2), 261 (1997)
- Turek W, Krowiak A, Appl. Catal. A:Gen., 417-418, 102 (2012)
- Jung KT, Bell AT, J. Mol. Catal. A-Chem., 163(1-2), 27 (2000)
- Aguila G, Jimenez J, Guerrero S, Gracia F, Chornik B, Quinteros S, Araya P, Appl. Catal. A: Gen., 360(1), 98 (2009)
- Chuah GK, Catal. Today, 49(1-3), 131 (1999)
- Liu Z, Ji W, Dong L, Chen Y, J. Solid State Chem., 138, 41 (1998)
- Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF, Powder Technol., 168(2), 59 (2006)
- Stefanic G, Music S, Croat. Chem. Acta., 75(3), 727 (2002)
- Gervasini A, Auroux A, J. Catal., 131, 190 (1991)
- Ai M, J. Catal., 49, 305 (1979)
- Yamaguchi O, Shirai M, Yoshinaka M, J. Am. Cream. Soc., c-510-c-512, 71(12) (1988)
- Balmer ML, Lange FF, Levi CG, J. Am. Cream. Soc., 77(8), 2069 (1994)
- Sakthivel R, Prescott HA, Deutsch J, Lieske H, Kemnitz E, Appl. Catal. A: Gen., 253(1), 237 (2003)
- Yue YH, Zhao XP, Hua WM, Gao Z, Appl. Catal. B: Environ., 46(3), 561 (2003)