Polymer(Korea), Vol.37, No.2, 211-217, March, 2013
매우 높은 분자량을 갖는 Nylon 4 및 Nylon 4/6 공중합체의 합성 및 그 특성 분석
Synthesis and Characterization of Very High Molecular Weight Nylon 4 and Nylon 4/6 Copolymers
E-mail:
초록
Potassium tert-butoxide(t-BuOK)와 CO2 및 혹은 benzoyl chloride(BzC)를 각각 nylon 4 및 nylon 4/6 공중합체의 중합 개시제 시스템으로, 18-crown-6 ether(crown ether) 또는 tetramethyl ammonium chloride(TMAC)를 촉매로 사용하여 2-pyrrolidone(C4) 및 ε-caprolactam(C6)의 음이온 개환반응을 통하여 분자량이 매우 높은 polypyrrolidone (이하 nylon 4) 및 nylon 4 공중합체를 합성하였다. 개시제 시스템, crown ether 또는 TMAC가 중합반응에 미치는 영향을 분자량 및 수율 면에서 평가하였다. Crown ether나 TMAC를 사용하면 중합수율이 향상되었고 nylon 4의 경우 고유점도가 6.35 dL/g인 중합체를 합성할 수 있었다. 이 때 TMAC보다는 crown ether가 중합체의 분자량 상승에 더 효과적임을 확인할 수 있었다. 또한 제조된 중합체에 대해 TGA 및 DSC 열분석을 실시하였으며 분자량이 nylon 4 또는 nylon 4 공중합체의 열적 특성에 큰 영향을 미치지 않음을 확인하였다.
Potassium tert-butoxide (t-BuOK) with CO2 or benzoyl chloride (BzC) as a polymerization initiator system was used with crown ether or TMAC as catalyst to synthesize very high molecular weight nylon 4 homo- and copolymers by anionic ring opening polymerization. Effect of different amounts of catalyst, crown ether and TMAC on the polymerization was studied in terms of intrinsic viscosity, yield and thermal properties. By adding crown ether or TMAC, polymers with very higher intrinsic viscosity values were obtained in a high yield. It was possible to synthesize nylon 4 homopolymer with such a high intrinsic viscosity value of 6.36 dL/g. Crown ether was found to be more efficient in terms of intrinsic viscosity and polymer yields than TMAC. Thermal analysis confirmed that molecular weight effect on the thermal properties of both nylon 4 and nylon 4 copolymer was marginal.
Keywords:nylon 4;nylon 4/6;2-pyrrolidone;crown ether;tetramethylammonium chloride;very high molecular weight.
- Barnes CE, Lenzinger Berichte., 62, 62 (1987)
- Hashimoto K, Sudo M, Sugimura T, Inagaki Y, J. Appl. Polym. Sci., 92(6), 3492 (2004)
- Dachs K, Schwartz E, Angew. Chem. Int. Ed., 1, 430 (1962)
- Tachibana K, Hashimoto K, Tansho N, Okawa H, J. Polym. Sci. A: Polym. Chem., 49(11), 2495 (2011)
- Jung B, Kwon KS, Choi SK, Ryu MS, Polym.(Korea), 6(5), 313 (1982)
- Cho HN, Choi KG, Choi SK, J. Polym. Sci. Part A:Polym. Chem., 23, 623 (1985)
- Chuchma F, Roda J, Kralitek J, Makromol. Chem., 184, 1781 (1983)
- Huang RYM, Kim UY, Dickson JM, Lloyd DR, Peng CY, J. Appl. Polym. Sci., 26, 1135 (1981)
- Costa G, Nencioni M, Russo S, Makromol. Chem., 182, 1399 (1981)
- Huang RYM, Rhim JW, J. Appl. Polym. Sci., 37, 55 (1989)
- Fries T, Belohlavkova J, Roda J, Kralicek J, Polym. Bull., 12, 87 (1984)
- Solomon O, Oprescu C, Makromol. Chem., 126, 197 (1969)
- Koo MS, Choi SK, J. Kor. Chem. Soc., 21, 440 (1977)
- Gechele GB, Stea G, Eur. Polym. J., 1, 91 (1965)
- Korshak VV, Frunze TM, Davtyan SP, Kurashev VV, Volkova TV, Kotelnikov VA, Shleifman RB, Polymer Science U.S.S.R., 21, 2161 (1979)
- Bacskai R, Polymer Science Technology(Plenum)., 24, 183 (1984)
- Barnes CE, U.S. Patent 3,721,652 (1973)
- Bacskai R, Polym. Bull., 14, 527 (1985)
- Fries T, Belohlavkova J, Roda J, Kralicek J, Polym. Bull., 12, 87 (1984)
- Bacskai R, U.S. Patent 4,101,531 (1978)
- Kobayashi F, Matsuya K, J. Polym. Sci. Part A: Polym.Chem., 1, 111 (1963)