- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.21, No.3, 331-337, March, 2013
Refractive index and surface relief grating formation in DNA based dye-doped films
E-mail:
The refractive index and surface relief grating formation in deoxyribonucleic (DNA) based thin films, functionalized with the well known fluorophore LDS698, was studied in holographic two beam coupling geometry and as function of the polarization of incident laser beams. The DNA biopolymer used was functionalized with cetyltrimethylammonium chloride (CTMA) surfactant. If both beams polarization are parallel (p-p) a refractive index grating is formed, as is usually observed, this is also the case when both beams polarizations are perpendicular (s-p). This fact is tentatively interpreted as due to the DNA matrix chirality. Also formation of a surface relief refractive index grating is observed in these materials for the first time, in contrary to earlier observations reported in literature. This effect is tentatively explained as due to the creation of an electrostatic bond between DNA and the guest molecules, which are electrically charged.
Keywords:deoxyribonucleic acid;DNA;LDS698;holography;refractive index grating;phase gratings;absorption gratings;surface relief gratings
- Rochon P, Batalla E, Natansohn A, Appl. Phys. Lett., 66, 136 (1995)
- Kim DY, Tripathy SK, Li L, Kumar J, Appl. Phys. Lett., 66, 1166 (1995)
- Eichler HJ, Gunter P, Pohl DW, Laser-Induced Dynamic Gratings, Springer, Berlin, 1986.
- Lagugne-Labarthet F, Rochon P, Natansohn A, Appl. Phys. Lett., 75, 1377 (1999)
- Watson JD, Crick FHC, Nature, 171, 737 (1953)
- Crick FHC, Watson JD, Proc. R. Soc. Lond., 223, 80 (1954)
- Manning GS, Q. Rev. Biophys., 11, 179 (1978)
- Miniewicz A, Kochalska A, Mysliwiec J, Samoc A, Samoc M, Grote JG, Appl. Phys. Lett., 91, 041118 (2007)
- Czaplicki R, Krupka O, Essaidi Z, El-Ghayoury A, Kajzar F, Grote JG, Sahraoui B, Opt. Express, 15, 15268 (2007)
- Grote J, Diggs D, Nelson R, Zetts J, Hopkins F, Ogata N, Hagen J, Heckman E, Yaney P, Stone M, Dalton L, Mol. Cryst. Liq. Cryst., 426, 3 (2005)
- Wang L, Yoshida J, Ogata N, Chem. Mater., 13, 1273 (2001)
- Niziol J, Sniechowski M, Hebda E, Jancia M, Pielichowski J, Chem. Chem. Technol., 4, 397 (2011)
- Rau I, Grote JG, Kajzar F, Pawlicka A, Compt. Rend. Phys., 13, 853 (2012)
- Hung YC, Lin TY, Hsu WT, Chiu YW, Wang YS, Fruk L, Opt. Mater., 34, 1208 (2012)
- Silva DL, Schab-Balcerzak E, Miniewicz A, J. Appl. Phys., 108, 083540 (2010)
- Moldoveanu M, Meghea A, Popescu R, Grote JG, Kajzar F, Rau I, Mol. Cryst. Liq. Cryst., 522, 180 (2010)
- Moldoveanu M, Popescu R, Pirvu C, Grote JG, Kajzar F, Rau I, Mol. Cryst. Liq. Cryst., 522, 530 (2010)
- You H, Spaeth H, Linhard VNL, Steckl AJ, Langmuir, 25(19), 11698 (2009)
- Pawlik G, Mitus AC, Mysliwiec J, Miniewicz A, Grote JG, Chem. Phys. Lett., 484(4-6), 321 (2010)
- Baldus O, Leopold A, Hagen R, Bieringer T, Zilker SJ, J. Chem. Phys., 114(3), 1344 (2001)
- Sobolewska A, Miniewicz A, Kusto J, Moczko K, Sek D, Schab-Balcerzak E, Grabiec E, Kajzar F, Proc. SPIE, 5724, 21 (2005)
- Rodriguez A, Vitrant G, Chollet PA, Kajzar F, Appl. Phys. Lett., 79, 461 (2001)
- Mysliwiec J, Sznitko L, Sobolewska AM, Bartkiewicz S, Miniewicz A, Appl. Phys. Lett., 96, 141106 (2010)
- Heckman E, Yaney P, Grote J, Hopkins F, Tomczak M, Proc. SPIE, 6117, OK1 (2006)
- Steckl AJ, Nat. Photonics, 1, 3 (2007)
- Nakamura K, Ishikawa T, Nishioka D, Ushikubo T, Kobayashi N, Appl. Phys. Lett., 97, 193301 (2010)
- Mysliwiec J, Kochalska A, Miniewicz A, Appl. Opt., 47, 1902 (2008)
- Pray L, Nature Education, 1, 1 (2008)