- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.30, No.5, 1162-1170, May, 2013
Pyrolytic characteristics of Jatropha seedshell cake in thermobalance and fluidized bed reactors
E-mail:
Pyrolytic kinetic parameters of Jatropha seedshell cake (JSC) were determined based on reaction mechanism approach under isothermal condition in a thermobalance reactor. Avrami-Erofeev reaction model represents the pyrolysis conversion of JSC waste well with activation energy of 36.4 kJ mol^(-1) and frequency factor of 9.18 s^(-1). The effects of reaction temperature, gas flow rate and feedstock particle size on the products distribution have been determined in a bubbling fluidized bed reactor. Pyrolytic bio-oil yield increases up to 42 wt% at 500 ℃ with the mean particle size of 1.7 mm and gas flow rate higher than 3Umf, where the maximum heating value of bio-oil was obtained. The pyrolytic bio-oil is characterized by more oxygen, lower HHVs, less sulfur and more nitrogen than petroleum fuel oils. The pyrolytic oil showed plateaus around 360 ℃ in distribution of components’ boiling point due to high yields
of fatty acid and glycerides.
- Kim YM, Lee HW, Lee SH, Kim SS, Park SH, Jeon JK, Kim S, Park YK, Korean J. Chem. Eng., 28(10), 2012 (2011)
- Kim SW, Koo BS, Ryu JW, Lee JS, Kim CJ, Lee DH, Kim GR, Choi S, Fuel Process. Technol., 108, 118 (2013)
- Islam MN, Zailani R, Ani FN, Renew. Energy, 17(1), 73 (1999)
- Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164 (2010)
- Yanik J, Kommayer C, Saglam M, Yuksel M, Fuel Process. Technol., 88(10), 942 (2007)
- Caglar A, Demirbas A, Energy Conv. Manag., 43(4), 489 (2002)
- Encinar JM, Gonzalez JF, Martinez G, Gonzalez JM, Fuel Process. Technol., 89(12), 1448 (2008)
- Sricharoenchaikul V, Atong D, J. Anal. Appl. Pyrol., 85, 155 (2009)
- Vyazovkin S, Wight CA, Thermochim. Acta., 340-1, 53 (1999)
- Kim YC, Kim S, Chung SH, J. Ind. Eng. Chem., 11(6), 857 (2005)
- Kwon TW, Kim SD, Fung DPC, Fuel., 67, 530 (1988)
- Zhang HY, Xiao R, Huang H, Xiao G, Bioresour. Technol., 100(3), 1428 (2009)
- Park HJ, Park YK, Dong JI, Kim JS, Jeon JK, Kim SS, Kim J, Song B, Park J, Lee KJ, Fuel Process. Technol., 90(2), 186 (2009)
- Xu R, Ferrante L, Briens C, Berruti F, J. Anal. Appl. Pyrol., 86, 58 (2009)
- Di Blasi C, Signorelli G, Di Russo C, Rea G, Ind. Eng. Chem. Res., 38(6), 2216 (1999)
- Luo ZY, Wang S, Liao YF, Zhou JS, Gu YL, Cen KF, Biomass Bioenerg., 26(5), 455 (2004)
- Sonobe T, Worasuwannarak N, Pipatmanomai S, Fuel Process. Technol., 89(12), 1371 (2008)
- Piskorz J, Majerski P, Radlein D, Scott DS, Bridgwater AV, J. Anal. Appl. Pyrol., 46, 15 (1998)
- Putun AE, Ozcan A, Putun E, J. Anal. Appl. Pyrol., 52, 33 (1999)
- CONTI L, SCANO G, BOUFALA J, Biomass Bioenerg., 7(1-6), 291 (1994)
- Mason DM, Gandhi KN, Fuel Process. Technol., 7, 11 (1983)
- Park HJ, Jeon JK, Jung KY, Ko YS, Sohn JM, Park YK, Korean Chem. Eng. Res., 45(4), 340 (2007)