Applied Biochemistry and Biotechnology, Vol.170, No.1, 105-118, 2013
Anaerobic Treatment of Industrial Biodiesel Wastewater by an ASBR for Methane Production
A mechanically stirred anaerobic sequencing batch reactor (5 L, 30 degrees C) containing granular biomass was used to treat the effluent of an industrial biodiesel production process with the purpose to produce methane. Process stability and efficiency were analyzed as a function of applied volumetric organic load (AVOL of 1,000 to 3,000 mgCOD/L), reactor feed time, and cycle length (8-h cycles with 10-min or 4-h feeding and 4-h cycles with 10-min or 2-h feeding). Batch operations (B) with 1,000 to 3,000 mgCOD/L involved 10-min feeding/discharge: (1) 1.0-L influent with 4-h cycle and (2) 2.0-L influent with 8-h cycle. Fed-batch operations (FB) with 1,000 to 3,000 mgCOD/L involved 10-min discharge and the following feeding: (1) 1.0-L influent in 2 h with 4-h cycle and (2) 2.0-L influent in 4 h with 8-h cycle. At 1,000 mgCOD/L (AVOL of 18 to 1.29 gCOD/Lday), kinetic parameter values were 1.03 and 0.92 h(-1) at conditions B-1000-4 h and FB-1000-8/4 h, respectively. At both conditions, removal efficiency was 88 %, and cycle length could be reduced to 3 h (B-1000-4 h) and 5 h (FB-1000-8/4 h). At 2,000 mgCOD/L (AVOL of 2.38 to 2.52 gCOD/Lday), kinetic parameter values were 1.08 and 0.99 h(-1) at conditions B-2000-4/2 h and FB-2000-8/4 h, respectively, and removal efficiencies were 83 and 81 %. Cycle length could be reduced to 3 h (B-2000-4/2 h) and 6 h (FB-2000-8/4 h). At 3,000 mgCOD/L (AVOL of 3.71 to 3.89 gCOD/Lday), conditions allowing stable operation were B-3000-4 h, FB-3000-8/4 h, and FB-3000-4/2 h. Stability could not be obtained at condition B-3000-8 h, and the best results were obtained at condition FB-3000-8/4 h. Specific methane production ranged from 41.1 to 93.7 NmLCH(4)/gCOD, demonstrating reactor application potential and operation flexibility.