화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.3, 219-226, June, 2013
고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층
Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors
E-mail:
초록
차세대 전자ㆍ디스플레이 관련 제품의 휴대편리성, 유연성, 경량화, 대형화 등의 요구조건을 확보할 수 있는 유기반도체 소재기반 소프트 일렉트로닉스에 많은 관심이 모아지고 있다. 소프트 일렉트로닉스의 응용분야로는 전자 신문, 전자 책, 스마트카드, RFID 태그, 태양전지, 휴대용 컴퓨터, 센서, 메모리 등이 있으며, 핵심소자는 유기 전계효과 트랜지스터 (organic field-effect transistor, OFET)이다. OFET의 고성능화를 위해서는 유기반도체, 절연체, 전극 구성소재들이 최적화 구조를 형성하도록 적층되어야 한다. 필름형성화 과정에서 대부분의 유기반도체 소재는 결합력이 약한 van der Waals 결합으로 자기조립 결정구조를 형성하므로, 이들의 결정성 필름구조는 주위 환경(공정변수 및 기질특성)에 의해 크게 달라진다. 특히 기질의 표면 에너지(surface energy) 및 표면 거칠기(surface roughness)에 따라 유기반도체 박막 내 결정 구조 및 배향 등은 크게 달라져, OFET의 전기적 특성에 큰 차이를 미친다. 유기친화적 절연층 소재 및 표면개질화는 전하이동에 유리하도록 용액 및 증착공정 유기반도체 박막의 결정구조 및 배향을 유도시켜 OFET의 전기적 성능을 향상시킬 수 있다.
Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.
  1. Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao ZN, Nat. Mater., 9(10), 859 (2010)
  2. Guo YL, Yu G, Liu YQ, Adv. Mater., 22(40), 4427 (2010)
  3. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao ZA, Nature, 480(7378), 504 (2011)
  4. Kim SH, Jang M, Yang H, Park CE, J. Mater. Chem., 20, 5612 (2010)
  5. Gundlach DJ, Royer JE, Park SK, Subramanian S, Jurchescu OD, Hamadani BH, Moad AJ, Kline RJ, Teague LC, Kirillov O, Richter CA, Kushmerick JG, Richter LJ, Parkin SR, Jackson TN, Anthony JE, Nat. Mater., 7(3), 216 (2008)
  6. Kanimozhi C, Yaacobi-Gross N, Chou KW, Amassian A, Anthopoulos TD, Patil S, J. Am. Chem. Soc., 134(40), 16532 (2012)
  7. Cheng C, Yu C, Guo Y, Chen H, Fang Y, Yu G, Liu Y, Chem. Commun., 49, 1998 (2013)
  8. Kang I, An TK, Hong JA, Yun HJ, Kim R, Chung DS, Park CE, Kim YH, Kwon SK, Adv. Mater., 25(4), 524 (2013)
  9. Yang H, Lefevre SW, Ryu CY, Bao Z, Appl. Phys. Lett., 90, 172116 (2007)
  10. Yang HC, Shin TJ, Bao ZN, Ryu CY, J. Polym. Sci. B: Polym. Phys., 45(11), 1303 (2007)
  11. Yoon MH, Kim C, Facchetti A, Marks TJ, J. Am. Chem. Soc., 128(39), 12851 (2006)
  12. Yang HC, Shin TJ, Ling MM, Cho K, Ryu CY, Bao ZN, J. Am. Chem. Soc., 127(33), 11542 (2005)
  13. Kim DH, Park YD, Jang YS, Yang HC, Kim YH, Han JI, Moon DG, Park SJ, Chang TY, Chang CW, Joo MK, Ryu CY, Cho KW, Adv. Funct. Mater., 15(1), 77 (2005)
  14. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM, Chem. Rev., 105(4), 1103 (2005)
  15. Yang H, Yang L, Ling MM, Lastella S, Gandhi DD, Ramanath G, Bao Z, Ryu CY, J. Phys. Chem. C., 112, 16161 (2008)
  16. Kim SH, Yoon WM, Jang M, Yang H, Park JJ, Park CE, J. Mater. Chem., 22, 7731 (2012)
  17. Yang L, Yang H, J. Synchrotron Rad., 16, 788 (2009)
  18. Kim SH, Jang M, Yang H, Anthony JE, Park CE, Adv. Funct. Mater., 21(12), 2198 (2011)
  19. Singh TB, Sariciftci NS, Yang H, Yang L, Plochberger B, Sitter H, Appl. Phys. Lett., 90, 213512 (2007)
  20. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP, Science., 290, 2123 (2000)
  21. Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S, Iwasa Y, Nat. Mater., 3(5), 317 (2004)
  22. Loo YL, Willett RL, Baldwin KW, Rogers JA, J. Am. Chem. Soc., 124(26), 7654 (2002)
  23. Cai QJ, Chan-Park MB, Zhou Q, Lu ZS, Li CM, Ong BS, Org. Electron., 9, 936 (2008)
  24. Gundlach DJ, Zhou L, Nichols JA, Jackson TN, Necliudov PV, Shur MS, J. Appl. Phys., 100, 024509 (2006)
  25. Yang H, Yang C, Kim SH, Jang M, Park CE, ACS Appl.Mater. Interf., 2, 391 (2010)
  26. Kola S, Sinha J, Katz HE, J. Polym. Sci. B: Polym. Phys., 50(15), 1090 (2012)
  27. Veres J, Ogier S, Lloyd G, Chem. Mater., 16, 4543 (2004)
  28. Ulman A, Chem. Rev., 96(4), 1533 (1996)
  29. Kim DH, Lee HS, Yang HC, Yang L, Cho K, Adv. Funct. Mater., 18(9), 1363 (2008)
  30. Yang SY, Shin K, Kim SH, Jeon H, Kang JH, Yang HC, Park CE, J. Phys. Chem. B, 110(41), 20302 (2006)
  31. Yang HC, Kim SH, Yang L, Yang SY, Park CE, Adv. Mater., 19(19), 2868 (2007)
  32. Kim SH, Hong K, Jang M, Jang J, Anthony JE, Yang H, Park CE, Adv. Mater., 22(43), 4809 (2010)