Applied Chemistry for Engineering, Vol.24, No.3, 314-319, June, 2013
LED구동 TiO2 코팅 활성탄소 펠렛 제조 및 VOCs 제거 특성
The Preparation of TiO2 Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs
E-mail:
초록
본 연구에서는 휘발성 유기화합물 제거특성을 향상시키고자 졸겔법 및 urea의 고상 열처리법을 이용하여 질소가 도핑된 TiO2 (N-TiO2) 코팅 활성탄소 펠렛을 제조하였다. 또한 이 활성탄소 펠렛의 가시광 활성능 평가를 위하여 light emitting diods (LED)를 조사하였고, gas chromatography를 이용하여 벤젠가스 제거능을 측정하였다. Titanium tetra isopropoxide 함량이 증가함에 따라 활성탄소 펠렛 표면에 TiO2 코팅량이 증가되고, 비표면적이 감소됨을 SEM 및 BET 결과를 통해 각각 확인하였다. 벤젠가스 제거 결과, ACP10의 벤젠가스에 대한 파과점 도달시간이 ACP에 비하여 약 2배정도 증가되었다. 이는 활성탄소 펠렛의 표면에 코팅된 N-TiO2가 LED 광원 조사 하에서 더 효과적으로 벤젠가스를 분해하였기 때문으로 판단된다.
In this study, nitrogen doped TiO2 (N-TiO2) coated on an activated carbon pellet (ACP) was prepared using sol-gel and the solid state heat treatment of urea to improve the removal property of volatile organic compounds (VOCs). To explore the visible light photocatalytic activity of the ACP under the light emitting diods (LED), the removal property of benzene gas was characterized by gas chromatography. The SEM and BET results show that the increment of titanium tetra isopropoxide contents leads to the increased TiO2 coating amount of ACP surface and decreased specific surface area. From the results of benzene gas removal, the breakthrough time of ACP10 increased about 2 times compared to that of the ACP. The improved performance was attributed to the N-TiO2 coating on ACP surface, which could be more effective to remove benzene gas
under the condition of LED lamp.
- Jung SC, Lee SH, J. Korean Soc. Environ. Eng., 34, 397 (2012)
- Anfruns A, Martin MJ, Montes-Moran MA, Chem. Eng. J., 166(3), 1022 (2011)
- Jung KC, Hong SC, Appl. Chem. Eng., 14, 671 (2003)
- An HH, J. Korean Inst. Gas., 14, 35 (2010)
- Kim HS, Park YS, J. Korean Soc. Environ. Eng., 25, 977 (2003)
- Kim KJ, Kang CS, You YJ, Chung MC, Woo MW, Jeong WJ, Park NC, Ahn HG, Catal. Today, 111(3-4), 223 (2006)
- Li L, Liu SQ, Liu JX, J. Hazard. Mater., 192(2), 683 (2011)
- Park SK, Kim HC, Appl. Chem. Eng., 21(6), 680 (2010)
- Woo KJ, Kim SD, Lee SH, Korean Chem. Eng. Res., 45(3), 277 (2007)
- Ao CH, Lee SC, J. Photoch. Photobio. A., 161, 131 (2004)
- Selishchev DS, Kolinko PA, Kozlov DV, J. Photoch.Photobio. A., 229, 11 (2012)
- Choi MS, Han S, Jang SC, Jung YW, J. Korean Soc.Atmos. Environ., 25, 211 (2009)
- Bai BC, Im JS, Kim JG, Lee YS, Appl. Chem. Eng., 21(1), 29 (2010)
- Kang YG, Shin KS, Ahn SH, Hahm HS, J. Korean Oil Chem. Soc., 29, 466 (2012)
- Choi MJ, Chae KJ, Yu HW, Kim KY, Jang A, Kim IS, J. Korean Soc. Environ. Eng., 32, 907 (2011)
- Chen SF, Liu XQ, Liu YZ, Cao GY, Appl. Surf. Sci., 253(6), 3077 (2007)
- Kim J, Korean Chem. Eng. Res., 42(2), 224 (2004)
- Khanna PK, Singh N, Charan S, Mater. Lett., 61, 4725 (2007)
- Iliev V, Tomova D, Rakovsky S, Desalination, 260(1-3), 101 (2010)
- Kim Y, Bai BC, Lee YS, Appl. Chem. Eng., 23(3), 308 (2012)
- Lim JW, Jeong E, Jung MJ, Lee SI, Lee YS, Appl. Chem. Eng., 22(4), 405 (2011)
- Jung MJ, Jeong E, Cho S, Yeo SY, Lee YS, J. Colloid Interf. Sci., 381, 152 (2012)
- Ryu SK, Eom SY, Yim KS, EdieDan D, Korean Chem. Eng. Res., 42(3), 288 (2004)
- Jeong SJ, Lee DL, Kim TY, Kim JH, Kim SJ, Cho SY, Korean Chem. Eng. Res., 40, 694 (2002)
- Moon H, Lee WK, Chem. Eng. Sci., 41, 1995 (1986)
- Son MS, Kim SD, Woo KJ, Park HJ, Seo MC, Lee SH, Ryu SK, Korean Chem. Eng. Res., 44(6), 669 (2006)
- Kim HS, Park YS, J. Korean Soc. Atmos. Environ., 15, 805 (1999)
- Baek SW, Kim JR, Ihm SK, Catal. Today., 93, 575 (2004)
- Huang J, Jin X, Mao J, Yuan B, Deng R, Deng S, J. Hazard. Mater., 217, 406 (2012)
- Rezaee A, Pourtaghi GH, Khavanin A, Mamoory RS, Ghaneian MT, Godini H, Iran. J. Environ. Health. Sci. Eng., 5, 305 (2008)
- Lee J, Chang H, J. Korean Soc. Environ. Eng., 24, 889 (2002)
- Suh JM, Jeong CH, J. Korea Environ. Sci. Soc., 11, 743 (2002)