Journal of Physical Chemistry B, Vol.117, No.8, 2321-2327, 2013
Ultraviolet Laser Induced Hydrogen Transfer Reaction: Study of the First Step of MALDI In-Source Decay Mass Spectrometry
The early mechanisms of matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) are described herein. MALDI-ISD is initiated by the hydrogen transfer from excited matrix molecules to the carbonyl oxygen of the peptide backbone, which is followed by a radical-induced cleavage, producing the c'/z center dot fragment pair. As expected, the use of 2,5-DHB or 1,5-DAN was efficient to induce MALDI-ISD, and the strongest intensity of MALDI-ISD fragments was observed when laser shots were performed on matrix crystals. In contrast, the hydrogen radical transfer reaction was suppressed by using ionic liquid and amorphous structure of 2,5-DHB and 1,5-DAN mixture as a matrix. Our results suggest that the hydrogen transfer occurs on the matrix crystal during the dissipation of the laser energy and before desorption, following ISD fragments formed in the MALDI plume.