화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.17, 5289-5295, 2013
Impurity Partitioning During Colloidal Crystallization
We have found that an impurity partitioning takes place during growth of colloidal crystals, which was recognized by the fact that the impurity concentration in the solid (C-S) was different from that in the initial solution (C-0). The effective partition coefficient k(eff) (=C-S/C-0) was investigated for pure polystyrene and polystyrene dyed with fluorescent particles by changing the ratio of particle diameters d(imp)/d(cryst) and growth rate V. At each size ratio for the polystyrene impurity, k(eff) was less than unity and increased to unity with increasing V, whereas at a given growth rate, k(eff) increased to unity as d(imp)/d(cryst) approached unity. These results were consistent with the solute behavior analyzed using the Burton, Prim, and Slichter (BPS) model The obtained k(0), equilibrium partition coefficient, from a BPS plot increased as d(imp)/d(cryst) approached unity. In contrast, while the fluorescent particles also followed the BPS model, they showed higher k(0) values than those of the same size of polystyrene particles. A k(0) value greater than unity was obtained for impurities that were similar in size to the host particle. This behavior is attributed to the positive free energy of fusion associated with the incorporation of the fluorescent particles into the host matrix. Such positive free energy of fusion implies the presence of the enthalpy associated with interaction between particles.