화학공학소재연구정보센터
Journal of Process Control, Vol.23, No.3, 282-293, 2013
Modeling and control of a PEM fuel cell system: A practical study based on experimental defined component behavior
In this contribution, the dynamical behavior of a polymer electrolyte membrane (PEM) fuel cell system is modeled; related control approaches are developed. The system model used for experimental and modeling purposes describes a 1.2 kW PEM fuel cell stack and an air blower. Due to the dynamical fuel cell-blower interaction the fuel cell stack and the blower model are validated to real systems respectively. Additionally, a feedback based on PI-control is used for hydrogen pressure control with an anode inlet valve. This controller is able to eliminate a stationary error between the anode and cathode pressures. For principal investigations three control approaches, a classical static feed-forward control approach, a state-space feedback control, and a novel gain-scheduling approach are developed, applied, and compared. As result, it can be shown that the feed-forward approach lacks in performance recovering the excess oxygen ratio to the desired level. The state-space feedback control shows stationary error. The introduced gain-scheduling control approach leads to a fast excess oxygen ratio recovery without stationary deviations. (C) 2012 Elsevier Ltd. All rights reserved.