화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.160, No.3, F235-F243, 2013
The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution
Ni-based catalysts in aqueous alkaline media are low-cost electrode materials for electrolytic hydrogen generation, a renewable method of producing fuel and industrial feedstock. However, Ni cathodes show a significant decrease in their hydrogen evolution reaction (HER) activity after several hours of electrolysis. Further, industrial electrolysers are often subjected to transient anodic currents, the effects of which on Ni-based catalysts are not well-known. We consider the source of electrode deactivation and the effects of temporary anodic currents on smooth metallic Ni electrodes in alkaline solutions by cyclic voltammetry (CV), galvanostatic and potentiostatic polarization, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Polished surfaces are covered by a bilayer composed of alpha-Ni(OH)(2) underlaid by non-stoichiometric NiOx. Below the reversible hydrogen electrode (RHE) potential, the air-formed layer mostly reduces to Ni metal and H atoms incorporate deep into the electrode material. Under industrial conditions, i.e., concentrated NaOH/KOH solutions and large cathodic current densities, alpha-NiHx and beta-NiHx can form at the electrode surface. Above the RHE potential, NiOx, alpha-Ni(OH)(2), beta-Ni(OH)(2) and beta-NiOOH form reversibly and mostly reduce back to Ni on subsequent cathodic polarization. However, repeated oxidation and reduction will introduce strain on a catalyst material, which may lead to its mechanical failure. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.026303jes] All rights reserved.