화학공학소재연구정보센터
Langmuir, Vol.29, No.8, 2784-2789, 2013
Optofluidic Characterization of Nanoporous Membranes
An optofluidic method that accurately identifies the internal geometry of nanochannel arrays is presented. It is based on the dynamics of capillary-driven fluid imbibition, which is followed by laser interferometry. Conical nanochannel arrays in anodized alumina are investigated, which present an asymmetry of the filling times measured from different sides of the membrane. It is demonstrated by theory and experiments that the capillary filling asymmetry only depends on the ratio H of the inlet to outlet pore radii and that the ratio of filling times vary closely as H-7/3. Besides, the capillary filling of conical channels exhibits striking results in comparison to the corresponding cylindrical channels. Apart from these novel results in nanoscale fluid dynamics, the whole method discussed here serves as a characterization technique for nanoporous membranes.