Langmuir, Vol.29, No.9, 3012-3023, 2013
Pollenkitt Wetting Mechanism Enables Species-Specific Tunable Pollen Adhesion
Plant pollens are microscopic particles exhibiting a remarkable breadth of complex solid surface features. In addition, many pollen grains are coated with a viscous liquid, "pollenkitt", thought to play important roles in pollen dispersion and adhesion. However, there exist no quantitative studies of the effects of solid surface features or pollenkitt on adhesion of pollen grains, and it remains unclear what role these features play in pollen adhesion and transport. We report AFM adhesion measurements of five pollen species with a series of test surfaces in which each pollen has a unique solid surface morphology and pollenkitt volume. The results indicate that the combination of surface morphology (size and shape of echinate or reticulate features) with the pollenkitt volume provides pollens with a remarkably tunable adhesion to surfaces. With pollenkitt removed, pollen grains had relatively low adhesion strengths that were independent of surface chemistry and scalable with the tip radius of the pollen's ornamentation features, according to the Hamaker model. With the pollenkitt intact, adhesion was up to 3-6 times higher than the dry grains and exhibited strong substrate dependence. The adhesion enhancing effect of pollenkitt was driven by the formation of pollenkitt capillary bridges and was surprisingly species-dependent, with echinate insect-pollinated species (dandelion and sunflower) showing significantly stronger adhesion and higher substrate dependence than wind-pollinated species (ragweed, poplar, and olive). The combination of high pollenkitt volume and large convex, spiny surface features in echinate entomophilous varieties appears to enhance the spreading area of the liquid pollenkitt relative to varieties of pollen with less pollenkitt volume and less pronounced surface features. Measurements of pollenkitt surface energy indicate that the adhesive strength of capillary bridges is primarily dependent on nonpolar van der Waals interactions, with some contribution from the Lewis basic component of surface energy.