화학공학소재연구정보센터
Langmuir, Vol.29, No.10, 3170-3178, 2013
Organic Transformations on Metal Nanoparticles: Controlling Activity, Stability, and Recyclability by Support and Solvent Interactions
The different mechanisms by which the support and the solvent can influence the catalytic properties of a metal nanoparticle (NP) are reviewed. The use of a support not only significantly facilitates the recycling of NPs but also has many additional advantages varying from enhanced stabilization of the NP dispersion to the alteration of the electronic properties of the metal, shape selectivity effects, and even active participation in the reaction mechanism. The correct choice of solvent, on the other hand, can drastically influence properties such as the morphology of the particles and, in the case of alloys, determine the composition of the NPs. Judicious solvent selection also enhances recyclability and stability, and in some cases, the solvent plays a cocatalytic role. Despite the many beneficial effects of combining metal NPs with the correct support or solvent, many processes are not well understood. Further research should be conducted on elucidating the general mechanisms behind the support-NP or solvent-NP interactions.