Langmuir, Vol.29, No.11, 3765-3772, 2013
Surfaces with Combined Microscale and Nanoscale Structures: A Route to Mechanically Stable Superhydrophobic Surfaces?
Materials with superhydrophobic properties are usually generated by covering the surfaces with hydrophobic nanoscale rough features. A major problem, however, for any practical application of such strongly water-repellent surfaces is the mechanical fragility of the nanostructures. Even moderate forces caused by touching or rubbing the surfaces are frequently strong enough to destroy the nanostructures and lead to the loss of the superhydrophobic properties. In this article, we study the mechanical stability of superhydrophobic surfaces with three different topographies: nano- and microscale features and surfaces carrying a combination of both. The surfaces are generated by silicon etching and subsequent coating with a monolayer of a fluoropolymer (PFA). We perform controlled wear tests on the different surfaces and discuss the impact of wear on the wetting properties of the different surfaces.