화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.7, 738-746, July, 2013
Characterization of AN-SBR/Silica compound with acrylonitrile as a polar group in SBR
E-mail:
In this study, acrylonitrile-styrene-butadiene rubber (AN-SBR), in which polar monomer acrylonitrile was introduced to emulsion styrene-butadiene rubber (SBR) as the 3rd monomer, was applied to silica compound to examine the various properties that are required for tire tread compound. The mechanical properties of the AN-SBR compounds, the modulus, and the abrasion resistance were improved. These results are attributed to the increase in the degree of cross-linking of the compounds. In particular, the abrasion resistance result is attributed to the increase of filler-rubber interaction and the increased dispersion of silica in the compound by the application of poly(ethylene glycol) (PEG). When the PEG was applied to the AN-SBR compound, the values of tan δ were increased at 0 °C and decreased at 60 °C in dynamic viscoelastic characteristics. These results are due to the improvement of silica dispersion in the compound as the H-bonding increased the filler-rubber interaction, and the adsorption of the PEG onto silica reduced the strong filler-filler interaction between particles.
  1. Grosch KA, Rubber Chem. Technol., 69, 495 (1996)
  2. Wong JY, Theory of Ground Vehicles, 4th ed., John Wiley & Sons, Hoboken, 2008.
  3. Choi SS, J. Appl. Polym. Sci., 83(12), 2609 (2002)
  4. Lim KW, Ji SC, Jung KY, Kim TJ, Lee BJ, Elastom. Compos., 44, 232 (2009)
  5. Heinrich G, Vilgis TA, Kaut. Gummi Kunst., 61, 368 (2008)
  6. Thielen G, Berg C, Kaut. Gummi Kunst., 61, 377 (2008)
  7. Choi SS, Park S, Korea Polym. J., 9(2), 92 (2001)
  8. Desosa RL, Trapasso JA, J. Mater. Sci., 27, 1079 (2002)
  9. Carretero-Gonzalez J, Valentin JL, Arroyo M, Saalwachter K, Lopez-Manchado MA, Eur. Polym. J., 44, 3493 (2008)
  10. Karlevich ML, Koenig JL, Compos. Interfaces, 5, 125 (1997)
  11. Suzuki N, Ito M, Ono S, J. Appl. Polym. Sci., 95(1), 74 (2005)
  12. Flett MSC, Spectrochim. Acta, 18, 1537 (1962)
  13. Thomas B, Orville-Thomas W, J. Mol. Struct., 3, 191 (1969)
  14. Thomas B, Orville-Thomas W, J. Mol. Struct., 7, 132 (1971)
  15. Yan H, Sun K, Zhang Y, Zhang Y, Polym. Test, 24, 32 (2005)
  16. Parida SK, Mishra BK, Colloids Surf. A: Physicochem. Eng. Asp., 134, 249 (1998)
  17. Derosa RL, Trapasso JA, J. Mater. Sci., 37(6), 1079 (2002)
  18. Bandyopadhyay S, De PP, Tripathy DK, De SK, J. Appl. Polym. Sci., 63(13), 1833 (1997)
  19. Mark JE, Erman B, Eirich FR, Science and Technology of Rubber, 2nd ed., Academic Press Inc, New York, 1994.
  20. Kralevich ML, Koenig JL, Rubber Chem. Technol., 71, 300 (1998)
  21. Wagner MP, Rubber Chem. Technol., 49, 703 (1976)
  22. Yatsuyanagi F, Suzuki N, Ito M, Kaidou H, Polymer, 42(23), 9523 (2001)
  23. Rattanasom N, Polym. Test, 26, 369 (2007)
  24. Wrana C, Eisele U, Kelbch S, Kautsch. Gummi Kunstst., 53(3), 126 (2000)
  25. Wang MJ, Rubber Chem. Technol., 71, 520 (1998)
  26. Nikiel L, Gerspacher M, Yang HH, O’Farrell CP, Rubber Chem. Technol., 74, 249 (2001)
  27. Rieger J, Polym. Test, 20, 199 (2001)
  28. Pack SS, Kil SG, Jang BM, Song KC, Kim SK, Korea Polym. J., 25, 503 (2001)
  29. Takino H, Nakayama R, Yamada Y, Kohjiya S, Matsuo T, Rubber Chem. Technol., 70, 584 (1997)
  30. da Costa HM, Abrantes TAS, Nunes RCR, Visconte LLY, Furtado CRG, Polym. Test, 22, 769 (2003)
  31. Sternstein SS, Zhu AJ, Macromolecules, 35(19), 7262 (2002)
  32. Payne AR, J. Appl. Polym. Sci., 6, 57 (1962)
  33. Payne AR, Whittaker RE, Rubber Chem. Technol., 44, 440 (1971)
  34. Harwood JAC, Mullins L, Payne AR, J. Appl. Polym. Sci., 9, 3011 (1965)
  35. Ladouce L, Bomal Y, Flandin L, Labarre D, Rubber Chem. Technol., 76, 145 (2003)
  36. Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L, J. Polym. Sci. B: Polym. Phys., 45(3), 286 (2007)