화학공학소재연구정보센터
Clean Technology, Vol.19, No.2, 113-120, June, 2013
아크 플라즈마를 이용한 과불화합물 처리공정에서 반응가스에 의한 효과
Effect of Reaction Gases on PFCs Treatment Using Arc Plasma Process
E-mail:
초록
화학적으로 안정한 과불화합물을 처리하기 위해서는 많은 양의 에너지를 필요로 한다. 이러한 단점을 극복하기 위해서 저전력 아크 플라즈마 시스템을 개발하였다. 분해대상은 CF4, SF6, NF3가 플라즈마 토치로 직접 주입되었으며, 아크 플라즈마토치의 열효율을 측정하여 실출력을 계산하였다. 실출력과 폐기체 유량 변화 그리고 추가적인 반응가스에 의한 분해효율을 확인하였다. 또한 열역학적 평형조성 분석을 수행하여 실험 결과와 비교하였다. 토치의 열효율은 60~66%의 결과를 보였으며 폐가스 유량이 증가함에 따라 분해효율이 감소하였고 입력전력이 늘어남에 따라 분해효율이 상승되었다. 추가적인 반응 가스가 없이 CF4, SF6, NF3의 분해효율은 입력전력이 3 kW, 폐가스 유량이 70 L/min인 조건에서 각각 4, 15, 90%를 보였다. 반응가스로 산소와 수소를 이용하여 분해효율을 급격하게 증가시킬 수 있었으며, 실험 결과 산소보다 수소를 사용하였을 경우가 분해효율 상승효과와 부산물 제어에 효과적인 것을 알 수 있었다. 수소의 경우, 발생되는 부산물은 불화수소산이었으며 이는 일반적인 습식 스크러버를 이용하여 처리가 용이한 물질이다. 수소를 이용한 화학반응에서 입력전력이 3 kW, 폐가스유량이 100 L/min인 조건에서 CF4가 25%, SF6가 39%, NF3가 99%의 분해효율을 각각 나타냈다.
The treatment of chemically stable perflourocompounds (PFCs) requires a large amount of energy. An energy efficient arc plasma system has been developed to overcome such disadvantage. CF4, SF6 and NF3 were injected into the plasma torch directly, and net plasma power was estimated from the measurement of thermal efficiency of the system. Effects of net plasma power, waste gas flow rate and additive gases on the destruction and removal efficiency (DRE) of PFCs were examined. The calculation of thermodynamic equilibrium composition was also conducted to compare with experimental results. The average thermal efficiency was ranged from 60 to 66% with increasing waste gas flow rate, while DRE of PFCs was decreased with increasing gas flow rate. On the other hand, DRE of each PFCs was increased with the increasing input power. Maximum DREs of CF4, SF6 and NF3 were 4%, 15% and 90%, respectively, without reaction gas at the fixed input power and waste gas flow rate of 3 kW and 70 L/min. A rapid increase of DRE was found using hydrogen or oxygen additional gases. Hydrogen was more effective than oxygen to decompose PFCs and to control by-products. The major by-product in the arc plasma process with hydrogen was hydrofluoric acid that is easy to be removed by a wet scrubber. DREs of CF4, SF6 and NF3 were 25%, 39% and 99%, respectively, using hydrogen additional gas at the waste gas flow rate of 100 L/min and the input power of 3 kW.
  1. http://unfccc.int/key_steps/bali_road_map/items/6072.php
  2. Gupta J, Olsthoorn X, Rotender E, Environ. Sci. Policy., 6, 475 (2003)
  3. Chang MB, Chang JS, Ind. Eng. Chem. Res., 45(12), 4101 (2006)
  4. Mohindra V, Chae H, Sawin HH, Mocella MT, IEEE Trans.Semicond. Manuf., 10, 399 (1997)
  5. Radoiu MT, Radiat. Phys. Chem., 69, 113 (2004)
  6. Wang YF, Wang LC, Shih ML, Tsai CH, Chemosphere., 57, 1157 (2004)
  7. Tsai WT, J. Hazard. Mater., 159(2-3), 257 (2008)
  8. Reichardt H, Frenzel A, Schober K, Microelectron. Eng., 56, 73 (2001)
  9. Takubo T, Hirose Y, Kashiwagi D, Inoue T, Yamada H, Nagoka K, Takita Y, Catal. Commun., 11, 147 (2009)
  10. Houghton JT, Meira LG, Callander BA, Harris N, Kattenberg A, Maskell K, Climate Change 1995-The Science of Climate Change, Cambridge University Press, New York, 121 (1996)
  11. Dillon TJ, Horowitz A, Crowley JN, Atmos. Environ., 44, 1186 (2010)
  12. Kim DY, Park DW, Surf. Coat. Tech., 202, 22 (2008)
  13. Narengerile, Saito H, Watanabe T, Thin Solid Films, 518(3), 929 (2009)
  14. Han SH, Park HW, Kim TH, Park DW, Clean Technol., 17(3), 250 (2011)
  15. Moreau E, Chazelas C, Mariaux G, Vardelle A, J. Thermal Spray Tech., 15, 524 (2006)