화학공학소재연구정보센터
Clean Technology, Vol.19, No.2, 148-155, June, 2013
혐기성 발효에 의한 다시마 추출물로부터 휘발성 유기산 제조: 휘발성 유기산 생산성에 대한 환경적 영향인자 평가
Volatile Fatty Acid Production from Saccharina japonica Extracts by Anaerobic Fermentation: Evaluation of Various Environmental Parameters for VFAs Productivity
E-mail:
초록
본 연구에서는 거대 갈조류 대표종인 다시마(Saccharina japonica)로부터 물리화학적 전처리 방법, 미생물 접종비율, 다시마 추출물의 농도 및 pH 조건에 따른 휘발성 유기산(volatile fatty acids, VFAs) 생산 가능성 확인과 생산 효율을 평가하고자 하였다. 물리화학적 전처리 방법에 따른 휘발성 유기산의 최대 농도는 황산, 아임계수, 지질 추출 후 아임계수 전처리 순으로 나타났다. 황산 전처리 방법에서 미생물 접종비율(유효용적(WV)/미생물 부피(M) = 10~30), pH (6.0~7.0) 및 다시마 추출물의 농도(18.0~72.0 g/L)의 혐기성 발효 조건에 따른 휘발성 유기산 생성 농도에 미치는 영향을 확인한 결과, 발효 온도 35 ℃, 미생물 접종비율 15, pH 7.0, 발효시간 372시간에서 다시마 추출물의 농도가 18.0, 36.0, 54.0, 72.0 g/L일 때, 휘발성 유기산의 최대 농도가 각각 9.8, 13.9, 18.6, 22.3 g/L로 확인되었다. 생산된 휘발성 유기산의 조성은 pH가 높을수록 아세트산과 프로피온산의 생산 비율이 높았으며, pH가 낮을수록 부티르산의 비율이 높게 확인되었다. 생산된 저농도의 휘발성 유기산은 농축 및 분리공정과 연계하여 향후 기초화학 원료와 바이오연료 등으로 사용될 수 있으므로, 기존 화석연료의 대체에너지 생산에 기여할 수 있을 것으로 기대된다.
Volatile fatty acids (VFAs) production from marine brown algae, Saccharina japonica, was investigated in anaerobic dark fermentation. In order to evaluate the VFAs productivity, various experimental parameters (i.e., physicochemical pre-treatment, microorganism inoculation ratio, substrate concentration, and pH) were evaluated. According to the physicochemical pre-treatment methods, the maximum concentrations of VFAs were obtained in the order of sulfuric acid, subcritical water and subcritical water with lipid-extraction. Also, we investigated the operating parameters such as microorganism inoculation ratio (MV/M = 10 to 30), the substrate concentration (18.0 to 72.0 g/L) and pH (6.0 to 7.0) in sulfuric acid pre-treatment method. When the substrate concentrations were 18.0, 36.0, 54.0 and 72.0 g/L at 35 ℃, microorganism inoculation ratio 15, pH 7.0 for 372 hours, the maximum concentrations of VFAs were respectively 9.8, 13.9, 18.6 and 22.3 g/L. The change in VFAs concentrations was detected that acetic- and propionic acids increased according to increasing pH, while the butyric acid increased with decreasing pH. The VFAs obtained from concentration and separation process may be used as basic chemistry materials and bio-fuel, and they will expect to produce alternative energy of fossil fuel.
  1. Klass DL, Encyclopedia of Energy., 1, 193 (2004)
  2. Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer, M., Mateo, M. A, Apostolaki ET, Kendrick GA, Doete KJ, Mcglathery KJ, Serrano O, Nature Geosci., 5, 505 (2012)
  3. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
  4. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y, “Macroalgae as a Biomass Feedstock: a Preliminary Analysis," US DOE, PNNL-19944 (2010)
  5. http://www.abrc.re.kr
  6. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y, Science., 20, 308 (2012)
  7. Lee JY, Li P, Lee J, Ryu HJ, Oh KK, Bioresour. Technol., 127, 119 (2013)
  8. Lee SM, Lee JH, Appl. Chem. Eng., 23(2), 164 (2012)
  9. Pham TN, Nam WJ, Jeon YJ, Yoon HH, Bioresour. Technol., 124, 500 (2012)
  10. Chang HN, Kim NJ, “Method for Producing Bio-Chemicals Derived from Algal Biomass,” Korea Patent No. 10-1039432 (2011)
  11. Woo HC, Chang HN, Jeon YJ, Suh DJ, Chun BS, Oh KK, Kim KH, Kim DW, Choi JH, “Method for Preparing Volatile Fatty Acids from the Pre-treated Extracts of Marine Biomass Residue,” US Patent No. 13/807, 587 (2012)
  12. Kim J, Lee Y, Jung S, Lee J, Cho MH, Clean Technol., 16(1), 51 (2010)
  13. Lee SM, Kim GH, Lee JH, J. Ind. Eng. Chem., 18(4), 1512 (2012)
  14. Shi X, Jung KW, Kim DH, Ahn YT, Shin HS, Int. J. Hydrogen Energy., 36, 5857 (2011)
  15. Wall JD, Harwood CS, Demain A, Bioenergy, AMS Press, Washington DC, 347 (2008)
  16. Chan WN, Holtzapple MT, Appl. Biochem. Biotechnol., 111(2), 93 (2003)
  17. Fu ZH, Holtzapple MT, Bioresour. Technol., 101(8), 2825 (2010)
  18. Holtzapple MT, Granda CB, Appl. Biochem. Biotechnol., 156, 95 (2009)
  19. Mehta KI, Callihan CD, J. Am. Oil Chem. Soc., 61(11), 1728 (1984)
  20. Macarthur RH, Wilson EO, The Theory of Island Biogeography, Princeton University Press, Princeton, NJ (1967)
  21. Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M, Bioresour. Technol., 82(3), 209 (2002)