Clean Technology, Vol.19, No.2, 156-164, June, 2013
등온반응기와 단열반응기 조합으로 구성된 0.25 MW급 메탄합성 파일롯 공정 운전특성
Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor
E-mail:
초록
본 연구에서는 등온반응기와 단열반응기로 구성된 0.25 MW 메탄합성 파일롯 공정 실험을 통한 운전 특성을 분석하였다. 등온반응기는 메탄합성 반응을 통해 발생하는 열을 포화수의 유량과 압력을 통해 강제적으로 제어할 수 있는 반응기로 등온반응기와 단열반응기를 조합할 경우 기존 단열반응기만으로 구성된 메탄합성 공정에 비해 반응기 개수를 줄일 수 있다. 또한 합성가스 재순환이 불필요하기 때문에 단열반응기 조합으로 구성된 메탄합성 공정에서 비용의 약 15~20%를 차지하는 재순환 압축기를 제거할 수 있다. 등온반응기로 유입되는 합성가스의 H2/CO 비가 3보다 낮은 경우에는 튜브에 충진된 촉매에 탄소 침적 현상이 일어나 반응기의 차압이 증가하였으며, H2/CO 비가 3으로 공급되는 경우에는 탄소 침적 현상이 일어나지 않고 메탄합성 반응이 안정적으로 유지되어 CO 전환율 99% 이상, CH4 선택도 97% 이상, CH4 생산성 최대 695 ml/h·-cat를 얻을 수 있었다.
In this study, we analyzed the operational characteristics of a 0.25 MW methanation pilot plant. Isothermal reactor controled the heat released from methanation reaction by saturated water in shell side. Methanation process consisting of isothermal reactor and adiabatic reactor had advantages with no recycle compressor and more less reactors compared with methanation process with only adiabatic reactors. In case that H2/CO ratio of syngas was under 3, carbon deposition occurred on catalyst in tube side of isothermal reactor and the pressure of reactors increased. In case that H2/CO ratio was maintained around 3, no carbon deposition on catalyst in tube side of isothermal reactor was found by monitoring the differential pressure of reactors and by measuring the differential pressure of several of tubes filled with catalyst before and after operating. It was shown that CO conversion and CH4 selectivity were over 99, 97%, respectively, and the maximum CH4 productivity was 695 ml/h·g-cat.
- http://www.lgeri.com/industry/chemical/article.asp?grouping=01030300&seq=207
- http://www.nicholas.duke.edu/ccpp/ccpp_pdfs/synthetic.gas.pdf
- http://www.chinagasholdings.com.hk/siteen/aspx/News_Infor.aspx?id=677
- http://www.lgeri.com/industry/chemical/article.asp?grouping=01030300&seq=241
- Yoo Y, Kim S, Lim H, Byun C, Korea Gas Union., 37 (2010)
- Anne-Gaelle Collot, Clean Fuels from Coal, IEA Clean Coal Centre, London, 41 (2004)
- Lessard RR, Reitz RA, Energy Technol., 9, 740 (1982)
- Cover AE, Hubbard DA, Jain SK, Shah KV, Koneru PB, Wong EW, “Review of Selected Shfir and Methanation Process for SNG production,” Kellogg Rust Synfuels, Inc, Final Report (1985)
- Lom WL. Willaims AF, Substitute Natural Gas : Manufacture and Properties, John Wiley & Sons, New York (1976)
- Kim S, Yoo Y, Ryu J, Byun C, Lim H, Kim H, New & Renewable Energy., 6(4), 30 (2010)
- Kim S, “Analysis of Methanation Process Consisting of Adabatic Reactors in Coal-to-SNG Plant,” Ph.D. Dissertation, Ajou University, Suwon (2011)
- http://www.topsoe.com/business_areas/gasification_based/Processes/Substitute_Natural_Gas.aspx
- Kim JH, Kang SH, Ryu JH, Lee SK, Kim SH, Kim MH, Lee DY, Yoo Y, Byun C, Lim H, Korean Chem. Eng. Res., 49(4), 491 (2011)
- Shaik A. Qader, Natural Gas Substitutes from Coal and Oil, Elsevier, Amsterdam, 377 (1985)