화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.4, 539-546, July, 2013
말단 아민기를 갖는 폴리(N-이소프로필아크릴아미드) 및 알긴산 나트륨-g-폴리(N-이소프로필아크릴아미드)의 합성과 열응답 특성
Synthesis and Thermo-responsive Properties of Amino Group Terminated Poly(N-isopropylacrylamide) and Sodium Alginate-g-Poly(N-isopropylacrylamide)
E-mail:
초록
열응답성 고분자인 폴리(N-이소프로필아크릴아미드) (PNIPAAm) 말단에 아민기를 갖는 PNIPAAm-NH2 및 이들 알긴산 나트륨에 그래프팅시킨 공중합체를 합성하고 이들의 여러 가지 특성들을 분석하였다. PNIPAAm-NH2를 합성하기 위하여 N-이소프로필아크릴아미드를 라디칼 중합할 때 2-aminoethanethiol hydrochloride (AESH)를 연쇄이동제로 사용하였다. AESH 농도를 높이면 PNIPAAm-NH2의 분자량이 작아지며 PNIPAAm-NH2 수용액의 하한 임계용액온도(LCST)가 낮아졌다. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide 및 N-hydroxysuccinimide를 사용하여 PNIPAAm-NH2를 graft-onto 방법으로 알긴산 나트륨에 그래프팅시킨 alginate-g-PNIPAAm 공중합체 역시 온도에 따라 팽윤-수축 거동을 하였으며, PNIPAAm-NH2보다 약간 높은 온도에서 LCST를 나타내었고, 그래프트된 PNIPAAm의 양이 많아질수록 팽윤비가 커졌다.
Amino group-terminated poly(N-isopropylacrylamide) (PNIPAAm-NH2) was synthesized via a radical polymerization of N-isopropylacrylamide (NIPAAm) using 2-aminoethanethiol hydrochloride (AESH) as a chain transfer agent. The molecular weight of the PNIPAAm-NH2 was controlled by changing the concentration of AESH. The LCST of the aqueous solution of PNIPAAm-NH2 increased slightly with increasing the AESH concentration. Alginate-g- PNIPAAm copolymer was synthesized by grafting PNIPAAm-NH2 onto sodium alginate using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide. The formation of the grafted copolymers was confirmed by FTIR spectroscopy, solubility in water, and SEM-EDS. Alginate-g-PNIPAAm also exhibited swelling-deswelling behavior. However, it showed a LCST at a slightly increased temperature compared to PNIPAAm. The swelling ratio of the alginate-g-PNIPAAm hydrogel increased with the increase of the grafted PNIPAAm content.
  1. Liu F, Urban MW, Prog. Polym. Sci., 35, 33 (2010)
  2. Ahn JH, Jeon YS, Chung DJ, Kim JH, Polym.(Korea), 35(1), 94 (2011)
  3. Lim YH, Kim D, Lee DS, J. Appl. Polym. Sci., 64, 2647 (1990)
  4. Bajpai AK, Shukla SK, Bhanu S, Kankane S, Prog.Polym. Sci., 33, 1088 (2009)
  5. Kucking D, Richter A, Arndt KF, Macromol. Mat. Eng., 144, 288 (2003)
  6. Liang L, Feng XD, Martin PFC, Peurrung LM, J. Appl. Polym. Sci., 75(14), 1735 (2000)
  7. Hu JM, Liu SY, Macromolecules, 43(20), 8315 (2010)
  8. Kayaman N, Kazan D, Erarslan A, Okay O, Baysal BM, J. Appl. Polym. Sci., 67(5), 805 (1998)
  9. Weinhart M, Becherer T, Haag R, Chem. Commun., 47, 1553 (2011)
  10. Schmaljohann D, Adv. Drug Deliver. Rev., 58, 1655 (2006)
  11. Moon JR, Kim JH, Macromol. Res., 16(6), 489 (2008)
  12. Oh YJ, Lee G, Park SY, Polym.(Korea), 36(2), 223 (2012)
  13. Liu Y, Liu XY, Liu HJ, Cheng F, Chen Y, Macromol. Res., 20(6), 578 (2012)
  14. Schild HG, Prog. Polym. Sci., 17, 163 (1992)
  15. Fujii K, Ueki T, Niitsuma K, Matsunaga T, Watanabe M, Shibayama M, Polymer, 52(7), 1589 (2011)
  16. Boutris C, Chatzi EG, Kiparissides C, Polymer, 38(10), 2567 (1997)
  17. Deshmukh MV, Vaidya AA, Kulkarni MG, Rajamohanan PR, Ganapathy S, Polymer, 41(22), 7951 (2000)
  18. Wen OH, Kuroda S, Kubota H, Eur. Polym. J., 37, 807 (2001)
  19. Tauer K, Gau D, Schulze S, Volkel A, Dimova R, Colloid Polym. Sci., 287, 299 (2009)
  20. Yu R, Zheng S, J. Biomater. Sci., 22, 2305 (2011)
  21. Zhang RS, Polymer, 46(8), 2443 (2005)
  22. Cooperstein MA, Canavan HE, Langmuir, 26(11), 7695 (2010)
  23. Pourjavadi A, Amini-Fazl MS, Hosseinzadeh H, Macromol. Res., 13(1), 45 (2005)
  24. Han SM, Nam CW, Ko SW, J. Korean Fiber Soc., 37, 365 (2000)
  25. Teng S, Shi J, Peng B, Chen L, Compos. Sci. Technol., 66, 1532 (2006)
  26. Simpson NE, Stabler CL, Simpson CP, Sambanis A, Constantinidis I, Biomaterials., 25, 2603 (2004)
  27. Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK, Carbohyd. Res., 345, 469 (2010)
  28. Park SJ, Kang JY, Polym.(Korea), 29(4), 369 (2005)
  29. Socrates G, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons, New York (2001)
  30. Kutchko BG, Kim AG, Fuel, 85(17-18), 2537 (2006)