Korean Chemical Engineering Research, Vol.51, No.4, 487-492, August, 2013
초음파를 이용한 동식물성 혼합 폐유지로부터 바이오디젤 제조
Biodiesel Production from Waste Oils Mixed with Animal Tallows and Vegetable Oil by Transesterification Using Ultrasonic Irradiation
E-mail:
초록
초음파를 에너지원으로 하는 에스테르 교환 반응에 의해 오리기름과 쇠기름 등 동물성 폐유지와 대두유를 혼합한 동식물성 폐유지로부터 바이오디젤을 제조하였다. 초음파를 이용한 동식물성 유지의 에스테르 교환 반응 특성과 생성된 바이오디젤의 물리화학적 특성을 조사하였다. 또한, 초음파와 열에너지에 의한 에스테르 교환 반응의 반응특성도 비교하였다. 초음파를 이용한 에스테르 교환 반응에 의한 바이오디젤 수율은 균일계 알칼리 촉매인 수산화칼륨 촉매에서 높았다. 초음파를 이용한 동식물성 혼합 폐유지의 에스테르 교환 반응에서 수산화칼륨 촉매를 식물성 유지에 대해 무게비로 0.5% 사용하고, 혼합 폐유지에 대한 메탄올의 몰 비가 6일 때 지방산 메틸에스테르의 수율이 가장 높았다. 초음파를 에스테르 교환 반응의 에너지원으로 사용하면 반응시간 5분 만에 최고 수율과 평형에 도달하였다.
Transesterifications of waste oils mixed with animal tallows and vegetable oil by ultrasonic energy were examined over various catalysts for biodiesel production. Reaction activities of the transesterification were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties of feedstock and products were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The highest fatty acid methyl ester
(FAME) yield was obtained on the potassium hydroxide catalyst in the transesterification by ultrasonic irradiation. The effective reaction conditions by ultrasonic energy were 0.5 wt% catalyst loading and 6:1 molar ratio of methanol to the mixed oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The highest yields of FAME were obtained as 80% in 5 min and the reaction equilibrium reached at that time.
Keywords:Biodiesel;Ultrasonic Irradiation;Animal Tallows;Vegetable Oil;Alkali Catalysts;Transesterification
- Marchetti JM, Miguel VU, Errazu AF, Renew. Sust. Energ. Rev., 11, 1300 (2007)
- Lee JS, Park SC, Korean Chem. Eng. Res., 48(1), 10 (2010)
- Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831 (2012)
- Jung CS, Dong JI, J. Korean Ind. Eng. Chem., 18(3), 284 (2007)
- Yu MJ, Jo YB, Kim SG, Lim YK, Jeon JK, Park SH, Kim SS, Park YK, Korean J. Chem. Eng., 28(12), 2287 (2011)
- Saka S, Kusdiana D, Fuel, 80(2), 225 (2001)
- Kusdiana D, Saka S, Fuel, 80(5), 693 (2001)
- Kusdiana D, Saka S, Bioresour. Technol., 91(3), 289 (2004)
- Min EJ, Lee ES, Korean Chem. Eng. Res., 50(2), 257 (2012)
- Chung KH, Park BG, Appl. Chem. Eng., 21(4), 385 (2010)
- Cho HJ, Lee SB, Lee JD, Appl. Chem. Eng., 22(2), 155 (2011)
- Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H, Bioresour. Technol., 101(2), 639 (2010)
- Stavarache C, Vinatoru M, Maeda Y, Bandow H, Ultrason. Sonochem., 14, 413 (2006)
- Georgogianni KG, Katsoulidis AK, Pomonis PJ, Manos G, Kontominas MG, Fuel Process. Technol., 90(7-8), 1016 (2009)
- Santos FFP, Malveira JQ, Cruz MGA, Fernandes FAN, Fuel, 89(2), 275 (2010)
- Teixeira LSG, Assis JCR, Mendonca DR, Santos ITV, Guimaraes PRB, Pontes LAM, Teixeira JSR, Fuel Process. Technol., 90(9), 1164 (2009)
- van Gerpen J, Shanks B, Pruszko R, Clements, D. and Knothe G, Biodiesel Analytical Methods, NREL/SR-510-36240 (2004)
- http://www.astm.org/Standard/index.shtml.
- Chung KH, Kim J, Lee KY, Biomass Bioenerg., 33(1), 155 (2009)