화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.4, 1304-1309, July, 2013
Prediction of the optimum aqueous phase composition of a triglyceride microemulsion using response surface methodology
E-mail:
This paper presents the application of response surface methodology to predict the optimum aqueous phase composition of a triglyceride microemulsion for enhanced oil recovery. The two models capturing the relationships between interfacial tension and tertiary oil recovery data with the aqueous phase composition were validated prior to optimization. It was predicted that the optimum aqueous phase contains 3 wt% sodium chloride, 0.98 wt% alkyl polyglycosides, and 2.98 wt% glyceryl monooleate. At this composition the corresponding interfacial tension is minimum (0.000229451 mN/m) and the tertiary oil recovery is maximum (71.7865%). The predicted optimum aqueous phase composition using historical-data design is close to the experimental value.
  1. Putz A, Chevalier JP, Stock G, Philippot J, Journal of Petroleum Technology., 33, 710 (1981)
  2. Purwono S, Murachman B, The SPE Asia Pacific Oil and Gas Conference and Exhibition, SPE 68768, Jakarta, Indonesia (2001)
  3. Bouabboune M, Hammouch N, Benhadid S, The Petroleum Society’s 7th Canadian International Petroleum Conference and 57th Annual Technical Meeting, PAPER 2006-058, Calgary, Alberta, Canada (2006)
  4. Santanna VC, Curbelo FDS, Castro Dantas TN, Dantas Neto AA, Albuquerque HS, Garnica AIC, Journal of Petroleum Science and Engineering., 66, 117 (2009)
  5. Paul BK, Moulik SP, Current Science., 80, 990 (2001)
  6. Kahlweit M, Busse G, Faulhaber B, Langmuir, 11(9), 3382 (1995)
  7. Sottmann T, Strey R, J. Chem. Phys., 106(20), 8606 (1997)
  8. Sottmann T, Stubenrauch C, in: Stubenrauch C (Ed.), Microemulsions: Background, New Concepts, Applications, Perspectives, John Wiley & Sons, Ltd., Chichester, UK (2009)
  9. Jeirani Z, Mohamed Jan B, Ali BS, Noor IM, See CH, Saphanuchart W, Industrial Crops and Products., 43, 6 (2013)
  10. Jeirani Z, Mohamed Jan B, Ali BS, Noor IM, See CH, Saphanuchart W, Industrial Crops and Products., 43, 15 (2013)
  11. Kunieda H, Asaoka H, Shinoda K, Journal of Physical Chemistry., 92, 185 (1988)
  12. Joubran RF, Cornell DG, Parris N, Colloids and Surfaces A: Physicochemical and Engineering Aspects., 80, 153 (1993)
  13. Kahlweit M, Busse G, Faulhaber B, Eibl H, Langmuir, 11(11), 4185 (1995)
  14. Hecke EV, Catte´ M, Poprawski J, Aubry JM, Salager JL, Polymer International., 52, 559 (2003)
  15. Komesvarakul N, Sanders MD, Szekeres E, Acosta EJ, Faller JF, Mentlik T, Fisher LB, Nicoll G, Sabatini DA, Scamehorn JF, Journal of Cosmetic Science., 55, 309 (2006)
  16. Engelskirchen S, Elsner N, Sottmann T, Strey R, J. Colloid Interface Sci., 312(1), 114 (2007)
  17. Do LD, Withayyapayanon A, Harwell JH, Sabatini DA, Journal of Surfactants and Detergents., 12, 91 (2009)
  18. Fanun M, J. Colloid Interface Sci., 343(2), 496 (2010)
  19. Phan TT, Attaphong C, Sabatini DA, Journal of the American Oil Chemists Society., 88, 1223 (2011)
  20. Jeirani Z, Jan BM, Ali BS, Noor IM, See CH, Saphanuchart W, Chemometrics and Intelligent Laboratory Systems., 112, 1 (2012)
  21. Jurado E, Bravo V, Luzo´ n G, Ferna´ndez-Serrano M, Garcı´a-Roma´ n M, Altmajer-Vaz D, Vicaria JM, Journal of Surfactants and Detergents., 10, 61 (2007)
  22. Green DW, Willhite GP, Enhanced Oil Recovery, sixth ed., Society of Petroleum Engineers, TX, USA (1998)
  23. Shelton JT, Khuri AI, Cornell JA, Technometrics., 25, 357 (1983)
  24. Sahu JN, Acharya J, Meikap BC, J. Hazard. Mater., 172(2-3), 818 (2009)
  25. Jeirani Z, Jan BM, Ali BS, Noor IM, See CH, Saphanuchart W, Journal of Industrial and Engineering Chemistry., http://dx.doi.org/10.1016/j.jiec.2012.09.027. (2012)