화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.8, 843-851, August, 2013
Multipurpose polyurethane antimicrobial metal composite films via wet cast technology
E-mail:,
We report on the preparation and characterization of polyurethane (PU) film containing metal particles and their antibacterial activity. The utilized PU films containing metal particles were prepared by a simple solvent evaporation method. The surface morphology, structure and optical properties of the resultant products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and UV-vis spectroscopy. The antibacterial activity was tested against four common food borne pathogenic bacteria, namely, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae by minimum inhibitory concentration (MIC) method. Our results demonstrated that no bactericidal activity was detected for the pristine PU film. Further on, antibacterial activity was observed to be more pronounced for the PU films containing metal particles which were attributed to the presence of metal in the PU thin films. Overall, this study demonstrates the fabrication of cheap, stable and effective material with excellent antimicrobial activity that can be utilized to inhibit the microbial growth associated with food stuff.
  1. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C, Biotechnol. Adv., 28, 232 (2010)
  2. Tauxe RV, Int. J. Food Microbiol., 78, 31 (2002)
  3. Greig JD, Ravel A, Int. J. Food Microbiol., 130, 77 (2009)
  4. Koopmans M, Duizer E, Int. J. Food Microbiol., 90, 23 (2004)
  5. Jackson V, Blair IS, McDowell DA, Kennedy J, Bolton DJ, Food Control, 18, 346 (2007)
  6. White DG, Zhao S, Simjee S, Wagner DD, McDermott PF, Microb. Infect., 4, 405 (2002)
  7. Kim KY, Park JH, Kwak HS, Woo GJ, Int. J. Food Microbiol., 146, 52 (2011)
  8. Tenover FC, Am. J. Med., 119, S3 (2006)
  9. Ojha U, Kulkarni P, Faust R, Polymer, 50(15), 3448 (2009)
  10. Kidoaki S, Kwon IK, Matsuda T, J. Biomed. Mater. Res. B: Appl. Biomater., 76, 219 (2006)
  11. Cakmakli B, Hazer B, Tekin IO, Comert FB, Biomacromolecules, 6(3), 1750 (2005)
  12. Deka H, Karak N, Kalita RD, Buragohain AK, Polym. Degrad. Stabil., 95, 1509 (2010)
  13. Chattopadhaya DK, Raju KVSN, Prog. Polym. Sci, 32, 352 (2007)
  14. Liu X, Zhao Y, Liu Z, Wang D, Wu J, Xu D, J. Mol. Struct., 892, 200 (2008)
  15. Fong N, Simmons A, Warren LAP, Acta Biomater., 6, 2554 (2010)
  16. Jayakumar R, Nanjundan S, Prabaharan M, React. Funct. Polym., 66(3), 299 (2006)
  17. Francolini I, Dllario L, Guaglianone E, Doneli G, Martineli A, Piozzi A, Acta Biomater., 6, 3482 (2010)
  18. Hsu SH, Tseng HJ, Lin YC, Biomaterials, 31, 6796 (2010)
  19. Nirmala R, Nam KT, Navamathavan R, Park SJ, Kim HK, Nanoscale Res. Lett., 6, 2 (2011)
  20. Kim JS, Kuk E, Yu KN, Kim JS, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH, Nanomed. Nanotechnol. Biol. Med., 3, 95 (2007)
  21. Magana SM, Quintana P, Aguilar DH, Toledo JA, Angeles-Chavez C, Cortes MA, Leon L, Freile-Pelegrin Y, Lopez T, Sanchez RMT, J. Mol. Catal. A-Chem., 281(1-2), 192 (2008)
  22. Kalayci OA, Comert FB, Hazer B, Atalay T, Cavicchi KA, Cakmak M, Polym. Bull., 65(3), 215 (2010)
  23. Hazer DB, Kilicay E, Hazer B, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 32, 637 (2012)
  24. Dibrov P, Dzioba J, Gosink KK, Hase CC, Antimicrob. Agents Chemother., 46, 2668 (2002)
  25. Dragieva I, Stoeva S, Stoimenov P, Pavlikianov E, Klabunde K, Nanostruct. Mater., 12, 267 (1999)
  26. Ando Y, Miyamoto H, Noda I, Sakurai N, Akiyama T, Yonekura Y, Shimazaki T, Miyazaki M, Mawatari M, Hotokebuchi T, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 30, 175 (2009)