Korea-Australia Rheology Journal, Vol.25, No.3, 137-144, August, 2013
Effects of NaCl on the rheological behavior of collagen solution
E-mail:
The effects of NaCl on the rheological properties of collagen solutions were studied by steady shear test and thixotropic loop test. The results showed the rheological properties of the collagen solutions with different NaCl concentrations were quite different. With low NaCl concentrations (0 to 0.1 mol/L), the collagen solutions exhibited salting in effect. The pseudoplastic behavior of the solutions became weak, while the thixotropy became strong. The collagen solutions with high NaCl concentrations (0.1 to 0.3 mol/L) exhibited salting out effect. The pseudoplastic behavior of the solutions became strong and the thixotropy had no obvious variation. In addition, Ostwald de-waele model, Carreau model and Herschel-Bulkley model were used to fit the experimental data. The superimposed experimental data and the model curves indicated the suitability of the models used, except for the up curves in thixotropic loop test.
- Abu-Jdayil B, Azzam MOJ, Al-Malah KIM, Carbohyd. Polym., 46, 207 (2001)
- Ahmed J, Ramaswamy HS, J. Food.Eng., 78, 1274 (2007)
- Amis EJ, Carriere CJ, Ferry JD, Int. J. Biol. Macromol., 7, 130 (1985)
- Arakawa T, Timasheff SN, Biochemistry., 23, 5912 (1984)
- Brown EM, Farrell HM, Wildermuth RJ, J. Protein Chem., 19, 85 (2000)
- Chin NL, Chan SM, Yusof YA, Chuah TG, Talib RA, J. Food Eng., 93, 134 (2009)
- Deiber JA, Peirotti MB, Ottone ML, Food Hydrocolloids., 25, 1382 (2011)
- De Paula M, Goissis G, Martins VCM, Da Silva Trindade JC, J. Biomed. Mater. Res. Part B., 75(2), 393 (2005)
- Dolz M, Hernandez MJ, Delegido J, Alfaro MC, Munoz J, J. Food Eng., 81, 179 (2007)
- Dominy BN, Perl D, Schmid FX, Brooks CL, J. Mol. Biol., 319, 541 (2002)
- Friess W, Eur.J.Pharm. Biopharm., 45, 113 (1998)
- Friess W, Schlapp M, Eur.J. Pharm. Biopharm., 51, 259 (2001)
- Gobeaux F, Belamie E, Mosser G, Davidson P, Asnacios S, Soft Matter., 16, 3769 (2010)
- Goissis G, Junior EM, Marcantonio RAC, Lia RCC, Cancian DCJ, Carvalho WM, Biomaterials., 20, 27 (1999)
- Graziano G, Chem. Phys. Lett., 491(1-3), 54 (2010)
- Hsieh TT, Tiu C, Simon GP, Wu RY, J. Non-Newton. Fluid Mech., 86(1-2), 15 (1999)
- Lai G, Du Z, Li G, Korea-Aust. Rheol. J., 19(2), 81 (2007)
- Lai GL, Li Y, Li GY, Int. J. Biol. Macromol., 42, 285 (2008)
- Lapasin R, Pricl S, Rheology of industrial polysaccharides: theory and applications, Blackie Academic & Professional, London (1995)
- Mancini M, Moresi M, Sappino F, J. Food Eng., 28(3), 283 (1996)
- Marcotte M, Taherian AR, Trigui M, Ramaswamy HS, J. Food Eng., 48(2), 157 (2001)
- Nagai T, Suzuki N, Food Chem., 68, 277 (2000)
- Pai V, Srinivasarao M, Khan SA, Macromolecules, 35(5), 1699 (2002)
- Penkova RK, Koynova R, Kostov G, Tenchov BG, Biochimica et Biophysica Acta., 1297, 171 (1996)
- Scharamm G, A practical approach to rheology and rheometry, Federal Republic of Germany, Karlsruhe (2000)
- Shi X, Ma W, Sun C, Wu S, Biomaterials., 22, 1627 (2001)
- Souza BWS, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA, Coimbra MA, Vicente AA, Food Hydrocolloids., 22, 287 (2012)
- Tarrega A, Duran L, Costell E, Int. Dairy. J., 14, 345 (2004)
- Wan Nik WB, Ani FN, Masjuki HH, Eng Giap SG, Ind. Crop.Prod., 22, 249 (2005)
- Yan MY, Li BF, Zhao X, Food Chem., 122, 1333 (2010)
- Yoshimura K, Terashima M, Hozan D, Shirai K, J. Agric. Food Chem., 48, 685 (2000)
- Zhang Y, Liu WT, Li GY, Food Chem., 103, 906 (2007)
- Zhang ZK, Li GY, Shi B, J. Soc. Leather Technol. Chem., 90, 23 (2006)